
S A C H A - É L I E AY O U N

Foundations, Implementation, and Applications of
Compositional Symbolic Execution

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London and

the Diploma of Imperial College London, April 11, 2025

iii

Statement of Originality
I, Sacha-Élie Ayoun, confirm that the work presented in this thesis is my own. Where information has

been derived from other sources, I confirm it is clearly indicated.

Copyright Declaration
The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are licensed

under a Creative Commons Attribution-Non Commercial 4.0 International Licence (CC BY-NC). Under this
licence, you may copy and redistribute the material in any medium or format. You may also create and
distribute modified versions of the work. This is on the condition that: you credit the author and do not use
it, or any derivative works, for a commercial purpose. When reusing or sharing this work, ensure you make
the licence terms clear to others by naming the licence and linking to the licence text. Where a work has
been adapted, you should indicate that the work has been changed and describe those changes. Please seek
permission from the copyright holder for uses of this work that are not included in this licence or permitted
under UK Copyright Law.

v

Abstract
This manuscript presents the mathematical foundations, implementation, instantiation, and evaluation of

Gillian, a parametric compositional symbolic execution framework for reasoning about program correctness
and incorrectness. Gillian supports three kinds of analyses: whole-program symbolic testing in the style
of CBMC; semi-automatic compositional verification in the style of VeriFast or Viper; and automatic
specification inference based on bi-abduction in the style of Infer:Pulse.

To instantiate Gillian to a specific target language (TL), a tool developer must implement a symbolic
state model, providing: for whole-program symbolic testing, a set of actions that capture the fundamental
behaviours of the TL’s memory; for compositional verification, a set of core predicates (building blocks of
a separation logic assertion language); and for specification inference, a set of fixes describing how errors
resulting from missing resource can be fixed. We provide an interface for symbolic state models and an
exhaustive list of properties they must satisfy to guarantee the soundness of the analyses.

Gillian currently has four instantiations: real-world languages, namely JavaScript, C, and Rust; and a
simple demonstrator language called Wisl. In this manuscript, we focus on the C and Rust instantiations,
showing how they each leverage opportunities offered by Gillian’s unique and flexible parametricity. Specifically,
Gillian-C encodes objects of the C heap into a novel tree representation that enables efficient compositional
byte-level reasoning, and Gillian-Rust automates exotic separation logic reasoning specified by RustBelt and
RustHornBelt and usually performed in Iris. The Gillian-C instantiation was used for several real-world case
studies, successfully finding bugs in industrial-grade code, including the AWS codebase. Gillian-Rust was
designed to enable hybrid Rust verification, where safe Rust is verified using the Creusot and the unsafe
code is verified using Gillian. Preliminary evaluation shows that this prototype can verify small, non-trivial
fragments of the Rust standard library with minor source code modification.

vii

Acknowledgements
The past six years have brought both rewarding and challenging moments, academically and personally.

Here, I have the opportunity to thank all the people who have made this work possible, the great times
greater, and the difficult times bearable.

First, I thank my supervisor, Philippa, for her guidance throughout my PhD. This journey began when
she accepted an enthusiastic student for a small project seven years ago, and she has worked hard ever since
so that I could continue this work without worry. I would also like to thank my assistant supervisor and
dear friend, Petar, for his unwavering support, both technically and personally. He was there when the proof
didn’t succeed, when the log files were too long, and, most importantly, when I needed to hear that this too
shall pass.

I am grateful to Bart Jacobs and John Wickerson for their time and effort in examining this thesis. I am
impressed by the quality of the feedback I received from them, and from the level of detail they put into
their reviews. They have made this manuscript much better.

Throughout my years at Imperial, I have met and worked with fantastic people. I thank the members
of the Verified Software group over the years for the technical discussions, support, and friendships. I am
grateful to my co-authors, José, Andreas, Daniele, and Xavier. I am also immensely grateful to Teresa and
Amani for their continuous administrative help. In addition, I am lucky to have co-supervised and worked
with talented students, with special mentions to Nat and Opale. I conclude this paragraph with a shoutout
to Caroline—for her fantastic friendship, and her help in proofreading and improving this manuscript.

When I arrived in London, I had no idea I would be so lucky to meet the friends I made here. There are
too many names to list exhaustively, but I would like to mention my ex-flatmates Viet, Pierre, Dominika;
and the East London neighbours: Sofiane, Faustine, and Manon. Having you here made London my home. I
am also immensely grateful to Manon, for sharing her life with me and supporting me through the end of
my PhD.

I am blessed to have been supported by loving friends whom I don’t see often enough, as they are in
France. I will forever be grateful to David for his friendship and for letting me stay with him when I needed
it. I thank Stefan for staying up too late at night fighting monsters so I wouldn’t be alone when I couldn’t. I
thank Amandine, whose friendship has been unwavering for the last 18 years. I thank those who always
picked up the phone when I needed to talk, particularly Camille, Maïa and Caroline. I also thank my close
friends who have illuminated my life for the last ten years: NLB, Val, Aymeric, Charles, 2BO, Kevin, Thuy,
Max, Tom, Victor and Caca. And to all my other friends—if your name is not here, I am still very grateful.

Next, I would like to thank those who taught me. I was fortunate to have had a few fantastic teachers
throughout my education, and I would not be here without them.

Finally, last but most importantly, I would like to thank my family, who, in more than one way, fall into
the category of those who taught me. Tata and Tonton gave me the creativity and humour to survive a PhD.
Mamie for being the best grandmother I could hope for. Zack was my guide in early life, and I have him to
thank for my love of computer science. Papa sowed the seed of mathematics and made sure it could grow.
And Maman—she gave me everything, and was there every moment of my education.

It is an understatement to say that I wouldn’t have done it without you.

ix

Contents

1 Introduction 1
1.1 Overview and contributions 1
1.2 Publications 3
1.3 Collaborations 4

I The Gillian framework 7

2 A unified framework 9
2.1 Symbolic execution 9
2.2 Compositionality 10
2.3 Parametricity 10
2.4 Incorrectness reasoning 11
2.5 A unified, modular, streamlined formalism 11

3 Overview 13
3.1 Using Gillian 13
3.2 Compositional symbolic execution à la carte 15
3.3 Soundness 16
3.4 Correctness and Incorrectness 18

4 Compositionality and parametricity 21
4.1 Languages and concrete semantics 21
4.2 Partial commutative monoids 23
4.3 Concrete compositional semantics 23
4.4 SIGIL: a parametric intermediate language 25
4.5 Examples of state models 30

5 Parametric Assertion Language and Specification Execution 35
5.1 Parametric assertion language 36
5.2 Producers 37
5.3 Consumers and Matching 38
5.4 Specification semantics 43
5.5 Examples 47

6 Symbolic execution 51
6.1 The symbolic realm 52
6.2 Path conditions. 54
6.3 Symbolic abstractions 55
6.4 Approximate solvers 56
6.5 Symbolic execution processes 58
6.6 Interlude: implementation and optimisation 63
6.7 Parametric symbolic execution for SIGIL 66
6.8 Example symbolic state models 68

xii

7 Analyses 75
7.1 OX and UX whole-program symbolic testing 75
7.2 Compositional verification 76
7.3 Automatic UX specification synthesis 78

8 Constructing state models 87
8.1 Product of state models 88
8.2 Exclusive ownership 91
8.3 Agreement state model 92
8.4 Fractional state model 93
8.5 Partial finite maps 94
8.6 Freeable state model 95
8.7 The predicate symbolic transformer 97
8.8 The mutable store, and where it goes wrong. 101
8.9 Implementation and code reuse 101

9 Applications: Wisl and JavaScript 103
9.1 Wisl: While language for separation logic 103
9.2 Gillian-JS 105

10 Related work 109
10.1 Compositional symbolic execution tools for verification 109
10.2 Bi-abduction tools 111
10.3 Parametric frameworks for analysis 112
10.4 Combining UX and OX analysis 113
10.5 Monadic symbolic execution 114

II Gillian-C 115

11 Gillian-C: What and why? 117
11.1 The Gillian-C Infrastructure 118
11.2 Whole-program symbolic testing 119
11.3 Compositional verification 120
11.4 Specification synthesis using bi-abduction 122

12 The Gillian-C symbolic state model 123
12.1 The CompCert memory model 123
12.2 Symbolic block trees: overview 124
12.3 Symbolic block trees: implementation 128
12.4 Symbolic block trees: assertion language 134
12.5 Symbolic block trees: fixes for bi-abduction 138

13 The Gillian-C front-end 139
13.1 Compiling C code 139
13.2 Compiling C assertions 142

14 Evaluation 143
14.1 Collections-C 143
14.2 The AWS Encryption Header case study 148
14.3 Limitations 152

xiii

15 Related work 153
15.1 Whole-program symbolic testing 153
15.2 Compositional verification using SL 153
15.3 Infer:Pulse 154

III Gillian-Rust 157

16 A challenge 159

17 The Gillian-Rust infrastructure 163
17.1 A hybrid approach: Creusot + Gillian-Rust 163
17.2 Example usage of Gillian-Rust 164

18 Reasoning about the real Rust heap 167
18.1 Layout-independent memory addresses 167
18.2 Objects in the Rust symbolic heap 168
18.3 Specifying the Rust heap: the typed points-to core predicate 170

19 Automating reasoning about mutable borrows 173
19.1 Modelling lifetimes: core predicates 173
19.2 Modelling full borrows: guarded predicates 174
19.3 Proving safety of borrow extraction 176

20 Functional correctness and prophetic reasoning 179
20.1 Representations, parametric prophecies, and observations 179
20.2 Key idea: parametric prophecies and symbolic execution 180
20.3 Value observers and prophecy controllers 181

21 Anatomy of a hybrid proof : Merge Sort 183
21.1 Writing a hybrid proof 183
21.2 Compilation of Creusot specifications 185
21.3 Gillian-Rust in action: LinkedList::push_front 185

22 Evaluation 189
22.1 EvenInt 189
22.2 LinkedList 190
22.3 MiniVec and Vec 191
22.4 Hybrid Verification 192

23 Limitations and Future work 195
23.1 Unimplemented features 195
23.2 Meta-theory simplifications 195
23.3 Unexplored topics 196

24 Related work 199

203

25 Future work 205

Appendix 219

A Compositionality and parametricity 221

xiv

B Parametric Assertion Language 223
B.1 Correctness of the parametric producer 223
B.2 Correctness of the parametric consumer 223
B.3 Soundness of specification execution 227
B.4 Soundness of the specification semantics 229

C Symbolic Execution 231
C.1 Monad laws for the symbolic execution monad 231
C.2 Composition of symbolic processes 232

D Analyses 237
D.1 Compositional verification 237
D.2 Specification inference procedure 239

E Constructing State Models 249
E.1 Product of state models 249
E.2 State model of values 252
E.3 Exclusive ownership 253
E.4 Agreement state model 256
E.5 Fractional state model 259
E.6 Partial maps 264
E.7 Freeable state model 270
E.8 Predicate state model transformer 274

F Some Gillian-Rust tactics 281
F.1 Freezing existential variables 281
F.2 Borrow extraction with prophecy variables 282

Chapter 1

Introduction

1.1 Overview and contributions

This manuscript presents the mathematical foundations, implementa-
tion, instantiation, and evaluation of Gillian, a parametric composi-
tional symbolic execution (CSE) framework for unified reasoning about
program correctness and incorrectness. Currently, Gillian supports
three kinds of analyses:

1. Whole-program symbolic testing (WPST), where users write
symbolic tests, which can be seen as an augmentation of standard
concrete tests routinely written by developers with symbolic vari-
ables. If a symbolic test passes, WPST provides bounded correctness
guarantees, and if it fails, it provides a concrete counter-example ex-
pected to trigger the corresponding bug. These guarantees are similar
to those provided by a bounded model checker such as CBMC1. 1 Clarke et al., “A Tool for Checking

ANSI-C Programs”, 2004 [CKL04]2. Semi-automatic compositional verification, where users an-
notate code with separation-logic2 (SL) specifications and proof 2 Reynolds, “Separation Logic: A

Logic for Shared Mutable Data
Structures”, 2002 [Rey02]

tactics. In case of success, this analysis provides unbounded func-
tional correctness guarantees, and in case of failure, it provides a
failing symbolic trace. This analysis is similar to the one performed
by VeriFast3 or Viper4. 3 Jacobs et al., “VeriFast: A Powerful,

Sound, Predictable, Fast Verifier for
C and Java”, 2011 [Jac+11]
4 Müller et al., “Viper: A Verification
Infrastructure for Permission-Based
Reasoning”, 2016 [MSS16b]

3. Automatic specification inference, which does not require user-
provided annotations of any kind and generates incorrectness sepa-
ration logic5 (ISL) specifications for each of analysed functions, in

5 Raad et al., “Local Reasoning
About the Presence of Bugs: Incor-
rectness Separation Logic”, 2020
[Raa+20]

the style of Infer:Pulse6.

6 Le et al., “Finding real bugs in big
programs with incorrectness logic”,
2022 [Le+22]

Gillian currently has four instantiations: three for real-world lan-
guages, JavaScript, C, and Rust, and one for a simple demonstrator
programming language called Wisl. We focus here on the C and Rust
instantiations in detail, showing how they each leverage opportuni-
ties offered by the unique and flexible parametricity of Gillian. This
manuscript is split into three parts: Part I presents the mathematical
foundations of Gillian; Part II focuses on Gillian-C; and Part III fo-
cuses on Gillian-Rust. In the following, we provide an overview of the
contributions of each of these parts.

1.1.1 Gillian

The main contribution of Part I is the formalisation, implementation,
and proof of soundness of Gillian; this contribution can be broken
down into smaller pieces. First, we introduce a novel formalism for
CSE, which, for the first time, uses the “real” semantics of a language
as the trusted computing base (TCB) instead of a semantics already
specialised for separation-logic reasoning. In addition, this formalism

2 gillian

is parametric on a symbolic state model, which allows us to streamline
the formalisation of the engine’s core to capture only the essence of
CSE. Furthermore, the formalism is designed to be modular so that
the proof effort can be broken down into smaller, independent, and
more manageable pieces.

To instantiate Gillian to a particular target language (TL), a tool
developer has to implement a corresponding symbolic state model which
then gets “plugged into” the core engine. We formalise the core engine
and give a clear interface between the core and symbolic state models.
In particular, these state models need to provide:
• for whole-program symbolic testing, a set of actions that cap-

ture the fundamental behaviours of the TL;
• for compositional verification, additionally, a set of core predi-

cates, which are the building blocks of a separation-logic assertion
language appropriate for the TL; and

• for specification inference, additionally, a set of fixes, which
describe how errors resulting from missing resources can be fixed.
For each component we provide an exhaustive list of properties that

it must satisfy so that the soundness of the underlying Gillian analyses
is guaranteed: for correctness reasoning the absence of false positives
and for incorrectness reasoning the absence of false negatives.

As the core engine is minimal, a large share of the design, imple-
mentation, and proof burden is delegated to the tool developer creating
the symbolic state model. To alleviate this burden, we provide a set of
reusable components that can be used to build complex state models,
leaving the developer to focus on the specificities of the target language.
This approach, inspired by Iris7 but novel in the context of CSE, enables 7 Jung et al., “Iris from the ground

up: A modular foundation for higher-
order concurrent separation logic”,
2018 [Jun+18]

a sort of compositional execution à la carte. This approach greatly
simplifies the implementation and soundness proof of the symbolic
state models. For instance, the state model of Gillian-JS (§9.2) can
be entirely built from such components and is now only a few lines of
code. Furthermore, by removing duplication of code within the state
model itself, we reduced the likelihood of errors in the implementation
and improved performances by factoring out code and unifying the
optimisations accross all actions.

We evaluate the flexibility, expressivity, and real-world applicability
of Gillian in the rest of the manuscript.

1.1.2 Gillian-C

Gillian-C is the first compositional symbolic execution tool that sup-
ports all three analyses outlined above. Its first key contribution lies at
the core of its symbolic state model: a novel tree-based representation
of objects in the symbolic heap that automates efficient byte-level
reasoning. The use of this representation is facilitated by the unique
flexibility of Gillian, which, unlike VeriFast and Viper, does not require
the symbolic heap to be represented as a list of chunks.

Its second key contribution is a comprehensive evaluation of Gillian-
C on real-world codebases, verifying code that manipulates complex
data structures and finding bugs in industrial-grade code. Specifically,
we have written and run symbolic tests for Collections-C8, a real-world 8 Panić, srdja/Collections-C, 2024

[Pan24]

introduction 3

data structure library for C, and compared the results to those obtained
by the state-of-the-art CBMC tool. Moreover, we have verified the
correctness of the message header deserialisation module of the AWS
Encryption SDK for C9, showing Gillian-C’s usability in relatively-large- 9 Amazon Web Services, aws/aws-

encryption-sdk-c, 2024 [Ama24b]for-verification-tasks case studies. Finally, we were able to generate
ISL specifications for all the functions of Collections-C, demonstrating
the scalability of automatic specification inference.

1.1.3 Gillian-Rust

The core contribution of Part III is the introduction of a hybrid approach
for the verification of Rust code, based on the use of two tools, one for
verifying the safe fragment of the code and one for verifying the unsafe
fragment. To demonstrate the feasibility of this approach, we have used
the state-of-the-art Creusot10 safe Rust verifier and developed Gillian- 10 Denis et al., “Creusot: a Foundry

for the Deductive Verification of Rust
Programs”, 2022 [DJM22]

Rust to verify type safety and functional correctness of unsafe code in
a way that is compatible with Creusot. To soundly connect Creusot
and Gillian-Rust, we have relied on RustBelt11 and RustHornBelt12 as 11 Jung et al., “RustBelt: securing

the foundations of the Rust program-
ming language”, 2017 [Jun+17]
12 Matsushita et al., “RustHornBelt:
a semantic foundation for functional
verification of Rust programs with
unsafe code”, 2022 [Mat+22]

the underlying meta-theory. This approach required of us to encode
complex separation-logic reasoning extracted from the Iris development
of RustBelt and RustHornBelt into Gillian. To achieve this, we were
again, just as in the case of Gillian-C, able to leverage Gillian’s flexibility,
developing novel automation compatible with CSE that can reason
about mutable references in unsafe blocks. Some of these automations
necessitate the improvements to the compositional symbolic execution
framework that we introduce in Part I13. Finally, we have evaluated 13 Specifically, the guarded predicate

transformer defined in §19.2 does
not fit into previous formalisations
of Gillian where predicates are hard-
coded into the engine. In contrast,
our modularised engine (where pred-
icates are simply a “transformer”
optionally applied by the user) allows
for guarded predicates to be “just
another transformer”.

Gillian-Rust on several small but non-trivial functions of the Rust
standard library.

1.2 Publications

The following articles have been published or submitted for publication
as part of this PhD:
• Gillian, part I: A multi-language platform for symbolic execution .

J. Fragoso Santos, P. Maksimović, S-É. Ayoun, P. Gardner.
PLDI’20 [Fra+20]

• Gillian, part II: Real-world verification for JavaScript and C .
P. Maksimović, S-É. Ayoun, J. Fragoso Santos, P. Gardner.
CAV’21 [Mak+21] .

• Compositional Symbolic Execution for Correctness and Incorrectness .
A. Lööw, D. Nantes Sobrinho, S-É. Ayoun, C. Cronjäger,
P. Maksimović, P. Gardner.
ECOOP 24, distinguished paper [Löö+24a].

• Matching plans for Frame Inference in Compositional Reasoning .
A. Lööw, D. Nantes Sobrinho, S-É. Ayoun, P. Maksimović,
P. Gardner.
ECOOP 24 [Löö+24b].

• A hybrid approach to semi-automated Rust verification .
S-É.-Ayoun, X. Denis, P. Maksimović, P. Gardner.
PLDI 25 [Ayo+25].

4 gillian

1.3 Collaborations

Scientific work is rarely the product of a single mind. I14 gladly 14 As this is about my personal
contributions, I exceptionally use the
first-person pronoun in this section.

acknowledge that the work presented in this manuscript is not an
exception, and outline attribution of this work in this section, in order
of appearance in the manuscript15: 15 Note that this list also includes

novel concepts that will be intro-
duced in this manuscript.

• The original ideas behind Gillian have come from José Fragoso
Santos, and the original implementation of Gillian was led by José
and supported by Petar Maksimović. This work was done in 2019 and
was based on their previous work on JaVerT 2.0. I have been leading
the implementation of the tool since 2021, enhancing its performance,
expressivity and modularity. I have also closely supervised work that
enabled various features of Gillian, such as incremental reasoning
and the symbolic execution debugger16. 16 Karmios et al., “Symbolic Debug-

ging with Gillian”, 2023 [KAG23]

W
P

ST

C
om

p.
V

er
ifi

ca
ti
on

Sp
ec

In
fe

re
nc

e

P
ar

am
et

ri
ci

ty

O
X

+
U

X

So
un

dn
es

s
P

ro
of

s

T
C

B
:f

ul
ls

em
an

ti
cs

Sy
m

bo
lic

ex
ec

ut
io

n
m

on
ad

R
eu

sa
bl

e
st

at
e

m
od

el
co

m
po

ne
nt

s

Fragoso Santos
et al.

Gillian Part I ✓ × × ✓ × ✓ × × ×
Maksimović et al.

Gillian Part II × ✓ × ✓i × × × × ×
Lööw et al.

CSE ✓ ✓ ✓ × ✓ ✓ii × × ×
Ayoun

This manuscript ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓iii

Table 1.1: Comparison of the con-
tributions of this manuscript and
previous partial formalisations of
Gillian. I participated in all three
pieces of previous work but did not
lead the formalisations.

• The formalisation and soundness proof of parametric non-compositional
symbolic execution were published in Gillian Part I, and were led
by José and supported by Petar. Petar led the partial formalisation
of parametric compositional verification, presented in the Gillian
Part II paper, but this presentation did not include a soundness
proof. The formalisation and proof of soundness of a non-parametric
CSE tool supporting both over- (OX) and under-approximation
(UX) were led by Andreas Lööw and Daniele Nantes Sobrinho. I
implemented support for under-approximate reasoning in the tool
and conducted the corresponding evaluation.

i In Gillian Part II, the core asser-
tion language has built-in support
for pure formulae and user-defined
predicates. This manuscript defines
these as core predicates, making the
approach more modular.
ii In the work led by Lööw and
Nantes, the proof for compositional
verification does not support recur-
sive functions.
iii Opale Sjöstedt implemented these
components in Gillian and helped
improve their formalisation.

This manuscript introduces the following novel features to this
line of research, which are the product of my work:
– the soundness of the framework is justified with respect to a real

(full) semantics, not one that manipulates partial states tailored
for separation-logic reasoning;

– I formalise symbolic execution using a symbolic execution monad,
simplifying the proof and implementation work; and

– I provide a library of reusable components that can be used
to build complex state models, enabling what I call CSE à la

introduction 5

carte. Table 1.1 provides a summary comparison between the
formalisation presented in this manuscript and the previously
published work on Gillian.

• The design, implementation and evaluation of Gillian-C, are entirely
my own contributions.

• During the verification of the AWS Encryption SDK header deseri-
alisation module, Petar Maksimović designed the pure specification
of the header, specified and verified the JavaScript implementation,
and substantially improved the Gillian first-order solver to enable
verification. I specified and verified the C implementation.

• The design, formalisation, and implementation of the Gillian-Rust
state model are solely my contributions. The concept of hybrid
verification was developed in equal collaboration with Xavier Denis.
Additionally, Xavier contributed significantly to the engineering of
the Gillian-Rust front-end and was an invaluable source of knowledge
about Creusot and RustHornBelt, both of which are fundamental to
the introduced approach.

Part I
The Gillian framework

Chapter 2

A unified framework

Well but then you are not solving any
problem.

Patrick Cousot about Gillian, to me,
at POPL 2024

Gillian is a parametric compositional symbolic execution framework
for reasoning about program correctness and incorrectness. This fairly
concise description contains five terms that require unpacking, and
this chapter traces the origins and developments leading to Gillian,
addressing each of these terms and clarifying the gap it fills.

2.1 Symbolic execution

Gillian is a symbolic execution framework. Symbolic execution is a
technique pioneered in the 1970s1 that interprets programs using sym- 1 King, “Symbolic execution and

program testing”, 1976 [Kin76]; and
Boyer et al., “SELECT—a formal
system for testing and debugging
programs by symbolic execution”,
1975 [BEL75]

bolic values—expressions that contain variables—rather than concrete
values. Since a symbolic value represents a set of concrete values,
this approach allows for simultaneous exploration of multiple potential
program executions.

In symbolic execution, encountering a conditional statement may
lead to the exploration of multiple paths, each of which is characterised
by a path condition, a first-order formula satisfied by the symbolic
variables along this path. A path is said to be feasible if its path
condition is satisfiable, a property determined by an SMT solver2. If a 2 De Moura et al., “Z3: an efficient

SMT solver”, 2008 [DB08]; and
Barbosa et al., “cvc5: A Versatile
and Industrial-Strength SMT Solver”,
2022 [Bar+22]

feasible path leads to an error, symbolic execution normally reports a
bug back to the user.

Symbolic execution flourished in the 2010s, when a great advance-
ment was achieved in the performance of SMT solvers, leading to
several tools being extensively used in industry3. However, despite its 3 Cadar et al., “KLEE: unassisted

and automatic generation of high-
coverage tests for complex systems
programs”, 2008 [CDE08]; and Clarke
et al., “A Tool for Checking ANSI-C
Programs”, 2004 [CKL04]

advantages, symbolic execution is still faced with significant limitations:
• it may lead to path explosion, when the number of branching paths

exhausts computational resources;
• it is inherently bounded ; loops and recursive calls must be unrolled a

finite number of times, preventing potentially infinite computations;
• it lacks compositionality (or modularity), in that it does not allow

fragments of a program to be analysed in isolation.
The literature is rich with numerous techniques and approaches that

aim to address these limitations. In this manuscript, we focus on what
it means to do compositional symbolic execution.

10 gillian

2.2 Compositionality

We view compositional symbolic execution (CSE) as symbolic execution
that allows the analysis to be performed in segmented, function-by-
function fashion. This approach is evidently modular while at the
same time reducing the risk of path explosion as traces are limited to
the scope of a single function. It also unlocks the ability to obtain
unbounded correctness guarantees using various abstraction techniques.
In this manuscript, we focus on CSE that uses function specifications
written in separation logic.

Separation logic4 (SL) is a program logic that allows for local rea- 4 Reynolds, “Separation Logic: A
Logic for Shared Mutable Data
Structures”, 2002 [Rey02]

soning about programs correctness. Its separating conjunction5 P ∗Q
5 This connective is, in fact, charac-
teristic of bunched logics [OP99], of
which separation logic is an instance.

asserts that P and Q hold in two disjoint regions of the heap. The
frame rule6, foundational to SL, asserts that adding separate resources

6 The frame rule presented in the
original paper had an additional side
condition due to the use of a mutable
store. We omit it here, and discuss
the mutable store in §8.8.

does not interfere with execution outcomes, enabling compositional
analysis where functions are decoupled from their execution context:

Frame
{ P } e { Q }

{ P ∗R } e { Q ∗R }

Compositional symbolic execution traces its roots back to Smallfoot7 7 Berdine et al., “Smallfoot: Modular
Automatic Assertion Checking with
Separation Logic”, 2006 [BCO06]

which pioneered the technique. The legacy of Smallfoot extends to
contemporary verification tools like VeriFast8, Viper9 and JaVerT 2.010, 8 Jacobs et al., “VeriFast: A Powerful,

Sound, Predictable, Fast Verifier for
C and Java”, 2011 [Jac+11]
9 Müller et al., “Viper: A Verification
Infrastructure for Permission-Based
Reasoning”, 2016 [MSS16b]
10 Fragoso Santos et al., “JaVerT 2.0:
compositional symbolic execution for
JavaScript”, 2019 [Fra+19]

and automatic compositional bounded verifiers such as Infer11.

11 Calcagno et al., “Infer: An Auto-
matic Program Verifier for Memory
Safety of C Programs”, 2011 [CD11]

Since its creation, VeriFast has been used to relentlessly explore
new verification techniques12 based on separation logic, while Viper

12 Jacobs et al., “Expressive modular
fine-grained concurrency specifica-
tion”, 2011 [JP11]; Penninckx et al.,
“Sound, Modular and Compositional
Verification of the Input/Output
Behavior of Programs”, 2015 [PJP15];
Agten et al., “Sound Modular Veri-
fication of C Code Executing in an
Unverified Context”, 2015 [AJP15];
and Jung et al., “The future is ours:
prophecy variables in separation
logic”, 2020 [Jun+20]

has been used as a basis for enabling and enhancing automation13 for

13 Müller et al., “Automatic Ver-
ification of Iterated Separating
Conjunctions Using Symbolic Execu-
tion”, 2016 [MSS16a]; and Dardinier
et al., “Sound Automation of Magic
Wands”, 2022 [Dar+22]

the verification of several large-scale projects written in a variety of
programming languages14. Similarly, JaVerT 2.0 was an experiment

14 Eilers et al., “Nagini: A Static Ver-
ifier for Python”, 2018 [EM18]; Wolf
et al., “Gobra: Modular Specification
and Verification of Go Programs”,
2021 [Wol+21]; and Blom et al., “The
VerCors Tool Set: Verification of
Parallel and Concurrent Software”,
2017 [Blo+17]

in applying compositional symbolic execution techniques to a highly-
dynamic language that is JavaScript. Infer, on the other hand, has
become the industry standard for automatic bug-finding at scale15.

15 Distefano et al., “Scaling static
analyses at Facebook”, 2019 [Dis+19]

Gillian is a new entrant in this lineage, unifying non-compositional
symbolic execution, compositional verification, and compositional bug
finding in a single framework. To further this unification, Gillian
introduces a novel parametric approach to the handling of the state
and the SL resources that it contains.

2.3 Parametricity

The above-mentioned tools, despite their strengths, are each confined
to a single approach to modelling the state. For example, VeriFast
represents its resources as lists of “memory chunks”, a highly flexible
approach, but one that requires most reasoning to be extrinsically
axiomatised and manually performed. Viper employs a similar list of
chunks, albeit closely tied to an object-like memory model in which all
objects possess a common set of properties. This model has facilitated
Viper’s success in verifying programs written using various programming
languages; however, it comes with limitations. For instance, Nagini,
Viper’s Python front-end, only supports statically typed Python, raising

a unified framework 11

questions about its ability to handle more dynamic language features.
Javert 2.0, on the other hand, can handle JavaScript, a highly dynamic
language, but its memory model is tailored to the specifics of JavaScript,
and could not be used, for example, for verifying C programs.

Gillian introduces a novel parametric way of handling resources.
Tool developers using Gillian must provide a state model, defining:
a) the structure of their symbolic states; b) a set of basic operations to
manipulate these states, called actions ; and c) the building blocks of a
separation logic assertion language, called core predicates. This para-
metricity allows for the modelling of a wider variety of programming
languages, including static languages such as C and dynamic languages
such as JavaScript. In addition, state models tailored for a specific
language can make use of domain-specific knowledge to enhance the
precision and automation of the analysis16. Furthermore, this para- 16 The idea of language-tailored

automation is explored in Part II, in
the context of C analysis.

metricity allows for the exploration of new automations for more exotic
separation logic resources, commonly used in projects like Iris, but not
widely explored in the context of CSE17. 17 Exotic Iris-like resources are

explored in Part III, in the context of
Rust analysis.

Gillian offers this parametricity in the context of another novelty,
its support for both correctness and incorrectness reasoning.

2.4 Incorrectness reasoning

Traditional compositional symbolic execution tools primarily focus on
over-approximating (OX) verification strategies, which guarantee the
absence of bugs in case of success. However, the advent of Incorrectness
Logic18 (IL) and Incorrectness Separation Logic19 (ISL) underscore 18 O’Hearn, “Incorrectness logic”,

2019 [OHe19]
19 Raad et al., “Local Reasoning
About the Presence of Bugs: Incor-
rectness Separation Logic”, 2020
[Raa+20]

the importance of under-approximating (UX) analyses for effective bug
detection. In fact, Infer’s automatic compositional verification was
found to be more useful when trying to find bugs rather than when
trying to prove their absence. In turn, the technique used in Infer,
called bi-abduction, has been refined to guarantee the detection of real,
actionable bugs without false positives20. 20 Le et al., “Finding real bugs in big

programs with incorrectness logic”,
2022 [Le+22]

Gillian is able to host both OX and UX analyses on top of its core
engine by flipping a switch depending on the desired mode. Both
formalisation and implementation of Gillian are, to our knowledge, the
first to exhaustively capture under-approximate CSE (including sound
handling of function calls) and also pinpoint precisely how to switch
between OX and UX analyses.

2.5 A unified, modular, streamlined formalism

Gillian, in summary, is a compositional symbolic execution framework
that is parametric over a state model, supports diverse analyses, and
is capable of both OX and UX reasoning, making it the ideal setting
in which one could explore the unifying foundations of CSE. We take
advantage of this by formalising the parametric CSE engine at the core
of Gillian in a minimal yet general way. This allows us to extract the
essence of CSE and prove soundness of the core without clutter.

The downside of the minimality of the core engine is that a sub-
stantial part of the design and soundness proof effort is effectively

12 gillian

delegated to the tool developer in charge of designing the state model.
To mitigate this, we create a library of composable building blocks that
tool developers can use in the construction of their state models. Each
of these components comes with soundness preservation properties
which guarantee that the state models that contain them are correct by
construction. Importantly, should these components not be sufficient,
the tool developer can freely implement their own and combine them
with the ones from our library. To assist developers in this task, we
provide a succinct interface that should be implemented, together with
powerful abstractions that they can use, such as the symbolic execution
monad. In addition, should they wish to prove the soundness of these
components, Gillian offers a clear blueprint containing a set of simple,
concise properties, in contrast to the complex ones currently on offer.

Finally, while our primary goal is to obtain a deep understanding
of the essence of CSE tools, we do our best to not over-idealise our
formalisation, ensuring that it remains practical and applicable in real-
world scenarios. For example, we take into account the imperfection of
modern real-world SMT solvers and design an interface that ensures
their sound use. We also extensively discuss the various trade-offs and
techniques concerning optimisation and enhancing the scalability of
analyses, and the framework provides ample flexibility for an exploration
of these trade-offs.

Chapter 3

Overview

In this chapter, we provide an overview of our novel formalisation
of Gillian. In §3.1, we start by presenting the analyses that Gillian
supports and discuss what must be implemented by the tool developer
in order for these analyses to be unlocked. In §3.2, we then explain
how the core CSE engine can be extended with additional features by
applying transformers to the input state model, enabling a sort of CSE
à la carte. In addition, §3.3 provides a bird’s-eye view of the justification
of the framework’s soundness, which is a core contribution of this part
of the manuscript. Finally, in §3.4, as our framework supports both
over-approximation (OX) and under-approximation (UX), we precisely
describe which of its components are approximating and discuss how
they can be toggled between OX and UX.

3.1 Using Gillian

Gillian’s implementation performs its analyses on GIL1, a paramet- 1 GIL stands for Gillian Intermediate
Languageric intermediate language. In this manuscript (§4.4), we formalise a

Simplified and Improved GIL (SIGIL), which has fewer constructs than
GIL and allows for greater flexibility.

To instantiate the framework and use its analyses, a tool developer
must provide a compiler from the target language to GIL, together
with the OCaml implementation of a symbolic state model. The latter
provides: a) the datatype of symbolic states; b) actions that can be
performed on these states; and c) core predicates that form the building
blocks of a separation-logic assertion language.

Running example: linear heap state model and linked lists Con-
sider the linear heap model often used when formalising separation
logics2. The linear heap is a mapping from natural numbers to values, 2 The linear heap is used, for

example, in the Separation
Logic [Rey02], Incorrectness Sep-
aration Logic [Raa+20] and Exact
Separation Logic [Mak+23] papers.

manipulated using four actions: load, store, alloc and free. The
main assertion that is used to describe linear heaps is points-to core
predicate, x ↦→ y, which establishes ownership of a heap cell at address
x, which contains the value y.

In the linear heap, a linked list is commonly implemented as a
collection of nodes, where each node consists of two contiguous heap
cells, with the first cell containing the node value and the second cell
containing the address of the next node. The end of the list is signalled
by the address to the next pair equalling null. Figure 3.1 shows an
example of a linked list containing three nodes at addresses 0, 4, and 7

containing values 0, 1, and 2. The remaining cells are not relevant and
their content is elided for clarity.

14 gillian

0 - - 1 - 2 null · · ·

0 1 2 3 4 5 6 7 8 9

Figure 3.1: A diagram representing
the first ten cells of a linear heap
containing a singly-linked list of three
nodes, respectively at addresses 0, 4,
and 7 containing values 0, 1, 2.

llen(x) {
if x = null then 0
else

let z = ⟨load⟩(x+ 1) in

1 + llen(z)
}

Figure 3.2: A list-length function in
SIGIL instantiated with the linear
heap memory model

Figure 3.2 shows an example of a simple recursive function, written
in SIGIL instantiated with the linear heap state model, which computes
the length of a singly-linked list. It first checks if we have reached
the end of the list (that is, if the address x of the current node equals
null), and if it does, it evaluates to 0 as the list is empty. Otherwise,
it loads the address of the next node using the load action (actions
are denoted using angular brackets), and assigns this address to the
variable z. The function then recursively calls itself using z, adds 1 to
the result, and evaluates to the obtained value. We now proceed to
show what it means to apply each of the three analyses that Gillian
provides to this function.

Whole-program symbolic testing The first analysis that we present is
whole-program symbolic testing (WPST), which allows for the execution
of symbolic tests. Symbolic tests are akin to unit tests but may explore
an infinite number of potential executions simultaneously. This analysis
unrolls loops and recursive function calls a fixed number of times to
avoid any infinite loops. In case of success, WPST guarantees bounded
correctness, and in case of failure it provides a concrete counter-example.
The format of the input symbolic tests and the guarantees provided are
similar to those offered by bounded model checkers such as CBMC3. 3 Clarke et al., “A Tool for Checking

ANSI-C Programs”, 2004 [CKL04]

let content = nondet() in

let x = ⟨alloc⟩(2) in
let () = ⟨store⟩(x, content) in
let () = ⟨store⟩(x+ 1, null) in

assert(llen(x) == 1)

Figure 3.3: A symbolic test for the
list-length function of Figure 3.2
which proves that the function is
correct for all lists of size 1.

Figure 3.3 shows a simple symbolic test that proves that the list-
length function returns 1 for any list of size 1, independently of the
actual content of the (only) node. This is achieved by creating the
node one cell at a time using the store action, and using the result
of the nondet function as the node content. This function, when run
concretely non-deterministically returns an arbitrary value v, but when
run symbolically simply returns a fresh unconstrained symbolic variable,
thereby capturing all possible concrete behaviours. Finally, the assert

function checks that the function returns the expected value, raising a
test failure otherwise.4 4 We will later show that both

nondet and assert can be imple-
mented as an action that is compati-
ble with any state model.

Compositional verification Our second analysis is compositional verifi-
cation, where the user writes separation-logic specifications for functions
of the program. Each function is semi-automatically verified to satisfy
its specification, in isolation from the rest of the program. If successful,
the analysis provides unbounded functional correctness guarantees, and
in case of failure gives a failing symbolic trace. It is similar to the
analyses performed by VeriFast or Viper.

list(x, α) ≜
(x = null ∗ α = [])

∨ (∃y, z, β.
x ↦→ y ∗ (x+ 1) ↦→ z ∗
list(x+ 1, β) ∗ β = y : α)

Figure 3.4: Definition of the list

predicate that describes a list start-
ing at address x and containing the
sequence of values α, where : is the
standard list cons operator.

For example, the list-length function from Figure 3.3 can be spec-
ified using the following separation logic triple, where the list(x, α)

predicate, defined in Figure 3.4, denotes a list starting at address x

overview 15

and containing the sequence of values α:

{ list(x, α) } llen(x) { Ok : r. r = |α| ∗ list(x, α) }

This specification states that, starting from a state that contains a
list at address x and holding values α, the llen(x) function either
successfully terminates (as specified by the Ok outcome) or diverges.
Furthermore, it states that all terminating branches will return the
length of the list (using the dedicated variable r) and not modify the
state. Gillian can prove this specification automatically; we note that
some more complex proofs may require additional annotations, such as
loop invariants, lemma applications, and predicate manipulation.

Automatic specification synthesis The final type of analysis is auto-
matic specification synthesis, which can infer bounded ISL5 specifica- 5 It is also possible to synthesise

bounded SL specifications, though it
was found to be less useful than ISL
specifications. Therefore, we leave
the formalisation of SL specification
synthesis out of this presentation.

tions that are guaranteed sound for a given set of functions. Specifica-
tions are inferred using an under-approximate and parametric version
of a technique called bi-abduction6, which performs resource inference

6 Calcagno et al., “Compositional
shape analysis by means of bi-
abduction”, 2009 [Cal+09]

when the required resource to execute a program is found to be missing
from the current state. It is then possible to fully-automatically detect
true bugs in programs by applying a filter on the synthesised specifica-
tions7, although Gillian does not currently provide such a filter. This 7 Le et al., “Finding real bugs in big

programs with incorrectness logic”,
2022 [Le+22]

analysis is similar to the analysis performed by Meta’s Infer:Pulse tool.
For example, using the linear heap state model, Gillian can infer the

following specification of the llen function, which corresponds to the
successful case when the list is exactly of size 1:

[x ↦→ y, z] llen(x) [Ok : r. x ↦→ y, z ∗ z = null ∗ r = 1]

where x ↦→ y, z is syntactic sugar for x ↦→ y ∗ (x+ 1) ↦→ z.

Now that we have discussed the analyses Gillian can perform, we turn
our attention to the philosophy at the heart of our novel formalisation.

3.2 Compositional symbolic execution à la carte

SIGIL and its parametric assertion language are designed to be minimal,
delegating most of the reasoning to the input state model. The primary
use case of state models is, as the name suggests, to encode resources
manipulated by the program, such as the heap, but the interface of
state models is sufficiently general to enable other applications.

For instance, CSE tools usually offer a way to define predicates, such
as list, that can then be used in specifications. Such predicates, how-
ever, do not interact well with under-approximate reasoning. Instead
of proposing several versions of the engine, with or without support for
predicates, we are able to define a state model transformer Pred(S,P)8, 8 We denote “symbolicness” with an

overline.which extends a given state model S with a set of user-defined predi-
cates P and the associated reasoning.

Perhaps more surprisingly, we can take a similar approach to enable
bi-abduction. Given a symbolic state model compatible with UX rea-
soning, we can define a Bi(S) state model transformer, which performs
resource inference without modifying the symbolic execution engine of

16 gillian

SIGIL. Instead of keeping track of a symbolic state, states obtained
through the Bi transformer keep track of both a symbolic state and
an anti-frame that represents the resources missing to execute the
program, which can be used to infer specifications. In §7.3, we define
Bi and prove that if S is sound, then Bi(S) performs sound resource
inference.

We view this approach of having compositional symbolic execution
à la carte, where tool developers can mix and match the components
they need, as a strength of the framework. To facilitate this approach,
in Chapter 8, we provide a set of constructions for state models that
can be readily used and composed together. For example, the sym-
bolic linear heap used in the above examples can be constructed as
PMap(N,Freeable(Exc(Val))), indicating that the symbolic heap is a
partial finite map from symbolic natural numbers (N) to symbolic
values (Val), which are exclusively owned9 (Exc) and can be freed 9 In the standard SL sense.

(Freeable).
Finally, it is important to note that tool developers are free to create

their own custom state models in case they need to enable automation
for a specific set of resources that cannot be covered by the menu of
components we provide by default.

3.3 Soundness

Most chapters within this part are dedicated to justifying the soundness
of the framework. Figure 3.5 depicts the structure of the soundness
proof, which we explain below in more detail.

SS
Concrete soundness

(Def. 4.5)

Frame preservation
(Def. 4.5)

SSymbolic soundness
(Def. 6.13)

|=

Validity of
consumer &
producer
(Def. 5.5 &
Def. 5.7)

CS

Compiler
+

TCB

TCB

CCS CSS SSS

Parametric
concrete &
soundness
(Thm. 4.6)

Parametric
Frame preservation

(Thm. 4.6) Parametric
symbolic
soundness

(Thm. 6.20)

Specification
semantics
soundness

(Thm. 5.16)

Figure 3.5: General structure of
the meta-theoretical framework
of Gillian. Elements that the tool
developer must implement are in
red. Regarding the required proof,
the trusted computing base is in
purple, while the theoretical elements
that must be provided and proven
by the tool developer are in blue.
Elements and proofs provided by the
framework for free are in green.

The compiler from the target language to GIL and the symbolic
state model (S) that have to be implemented by the tool developer
to instantiate the framework are highlighted in red. The compiler
is assumed to be semantics-preserving, and proving its correctness is
outside the scope of this work.

overview 17

All analyses are then proven sound10 w.r.t. the semantics obtained by 10 All proofs in this manuscript are
pen-and-paper proofs.inserting a full state model S11 in the parametric concrete semantics CS.

11 We denote “fullness” with an
underline.

This semantics, together with the interpretation of the core predicates,
forms the trusted computing base (TCB) of the framework (i.e. the part
assumed to be correct), highlighted in purple in the above diagram.

The tool developer is in charge of proving the correctness properties
of the symbolic state model S with respect to the TCB. These results,
coloured in blue, are then lifted to the entire semantics of SIGIL using
theorems provided by the framework, coloured in green. We provide
further details about these two layers of proof below.

Correctness of the symbolic state model First, the tool developer
must prove the soundness of the symbolic state model with respect to
the concrete state model. To facilitate the proof work, we introduce
an additional theoretical component: the compositional state model S,
which still operates on concrete values, but manipulates fragments of
states, which must form a partial commutative monoid, instead of full
states. Moreover, the compositional state model defines the satisfiability
relation for the core predicates, and must implement producers and
consumers for these core predicates.

Next, the tool developer must prove four properties to guarantee
the soundness of the analysis. First, the semantics of the actions of the
compositional state model must be frame-preserving, and sound with
respect to the actions of the concrete state model. Second, the producer
and consumer of the compositional state model must be proven valid
with respect to the satisfiability relation of the core predicates. Finally,
the symbolic state model implemented must be proven sound with
respect to the compositional state model.

As it is the state models that handle the majority of the reasoning,
we take measures to alleviate the proof effort from the tool developer.
For instance, Chapter 6 introduces a monadic formalisation of symbolic
execution that simplifies soundness proofs. In addition, the library of
state model constructions offered in Chapter 8 has already been proven
sound, and state models such as the linear heap can be constructed as
described previously without requiring any further proof effort.

Parametric correctness of the symbolic specification semantics The
framework performs all three analyses using the symbolic specification
semantics (SSS, top-right of the diagram), which the tool developer
must instantiate using the symbolic state model. This semantics is
proven parametrically sound w.r.t. the concrete semantics of our trusted
computing base. In other words, if the symbolic state model S is sound
w.r.t. the concrete state model S, then the SSS instantiated with S is
sound w.r.t. the concrete semantics (CS) instantiated with S.

To perform this proof, we introduce two intermediate semantics: the
concrete compositional semantics (CCS) and the concrete specification
semantics (CSS). First, we show that the soundness property connecting
the compositional state model S and the full state model S lifts to an
analogous property that connects the CCS and the CS. Then, we show
that, provided validity of the consumer and producers of S, the CSS—
which replaces function calls with an “execution” of their specification,

18 gillian

rendering the analysis compositional—is sound w.r.t. the CCS. Finally,
we show that if the symbolic state model S is sound w.r.t. the concrete
state model S, then the SSS is sound w.r.t. the CSS, completing the
connection between SSS and CS.

3.4 Correctness and Incorrectness

Throughout our formalisation of Gillian, we precisely identify which
components of the framework determine whether the analysis is over-
approximate (i.e. guaranteeing the absence of false negatives) or under-
approximate (i.e. ensuring no false positives). We encourage the reader
to think of selecting between over-approximation (OX) and under-
approximation (UX) as toggling a switch. Each identified component
must be set either to OX or to UX , and this setting must be uni-
formly12 applied across all components to maintain the integrity of the

12 Not doing so would break all
guarantees of either absence of
false-positives or false-negatives.
In practice, one may compromise,
for instance using a fast but OX
solver for UX analysis. While a few
false positives may appear, doing so
may enable large-scale analysis. We
know from communication with its
developer that this is the approach
currently taken by Infer Pulse.

guarantees. Some components may universally apply to both OX and
UX settings, in which case they are said to be exact. Although it is
uncommon for all components to be exact, achieving exactness in any
component enhances the precision of the analysis.

Component OX UX

Compositionality
(Definition 4.4)

Frame subtraction Frame addition

Concrete soundness
(Definition 4.5)

All full path have
a compositional path

All compositional paths
have a full path

Core predicates
(Definition 5.1)

No restriction Strictly exact

Logic
(Definition 5.11)

SL ISL

Handling of
reasoning errors
(Miss & Lfail)

Signal error to the user Ignore and drop

Solver
(Definition 6.10)

In doubt, SAT In doubt, UNSAT

Symbolic soundness
(Definition 6.13)

All concrete paths
have a symbolic path

All symbolic paths
have a concrete path

Table 3.1: The seven components
that influence whether the analysis is
over- or under-approximating.We identify seven components influencing whether the analysis is

OX or UX . Table 3.1 provides an overview of these seven components,
and we discuss each below in detail.

Compositionality There are two flavours of compositionality, one
called Frame subtraction, required for over-approximation, and one
called Frame addition, required for under-approximation. While most
state models satisfy both properties, some exotic ones extracted from
Iris (such as the OneShot resource algebra) do not satisfy frame addition.

Concrete soundness The compositional semantics used for analysis
can be seen as a reification of a separation logic into semantics. In order

overview 19

to guarantee the correct properties, the compositional semantics must
be either OX or UX-sound with respect to the (real) full semantics of
the language.

Core predicates The core predicates are the building blocks of the
separation logic assertion language. To enable under-approximate
reasoning, all core predicates used in the analysis must be strictly exact,
meaning they are satisfiable by at most one state given an interpretation
of all logical variables. While this may sound like a strong requirement,
it is satisfied by most core predicates used in practice, such as the
points-to predicate. In contrast, over-approximate reasoning requires
no restriction on the core predicates.

Logic The logic used in the specification semantics is either SL or ISL.
The function call specifications are either OX or UX, depending on the
employed logic. Note that whole-program symbolic testing does not
use specifications and is therefore considered exact for this component.
Furthermore, it is possible to use externally proven specifications that
lie at the intersection of SL and ISL13, in which case function calls are 13 Maksimović et al., “Exact Sep-

aration Logic: Towards Bridging
the Gap Between Verification and
Bug-Finding”, 2023 [Mak+23]

also considered exact.

Handling of reasoning errors Our framework accurately interprets
all potential errors during execution, distinguishing between errors
that correspond to a program bug and errors stemming from reasoning
discrepancies. Specifically, we identify two categories of reasoning
errors: Miss and Lfail. The former relates to reasoning shortcomings
that could be rectified by providing additional resources, whereas the
latter represents an incompleteness or a fundamental incompatibility.
Neither type of error definitively indicates a bug in the program.

Accordingly, the handling of these errors is based on the analysis type.
In scenarios where the analysis must guarantee the absence of false
negatives, such errors should be reported to the user. Conversely, these
errors should be disregarded and excluded from the results to ensure the
absence of false positives. Both are unique to compositional analysis
and do not arise during whole-program symbolic testing. Therefore, in
the context of whole-program analysis, this framework component is
considered exact.

Solver Symbolic execution relies on using an SMT solver. While
formalisations of symbolic execution usually assume the solver to be
perfect, most theories used during verification are undecidable, breaking
this perfection. The SMT-lib14 standard dictates that an SMT query 14 Barrett et al., The Satisfiability

Modulo Theories Library (SMT-LIB),
2016 [BFT16]

may return SAT, UNSAT or UNKNOWN, the last indicating a failure to
conclude. Furthermore, the encoding of values into SMT may be under-
specified (and therefore over-approximating) or over-specified (and
hence under-approximating). To account for these imperfections, we
propose a definition of approximate solvers, which can be compatible
with OX or UX. Specifically, OX-approximate solvers may answer SAT
when unable to decide on an answer, ensuring that all of the truly
feasible paths are considered feasible. Conversely, UX-approximate

20 gillian

solvers may answer UNSAT in such cases, ensuring that no unfeasible
path is considered feasible.

Symbolic soundness Symbolic execution is achieved by abstracting
sets of concrete values into symbolic variables, inherently supporting
approximation. In particular, OX-sound symbolic execution ensures
that all concrete paths are covered by at least one symbolic path
whereas UX-sound symbolic execution ensures that all symbolic paths
must correspond to at least one concrete path. It is also possible to
design exact symbolic executions, but only if the structures involved
are sufficiently straightforward.

Chapter 4

Compositionality and parametricity

The first part of this manuscript aims to provide solid and extensive
theoretical foundations for the soundness of compositional symbolic
execution. Such soundness results should be proven with respect to the
semantics of the language being analysed.

Many real-world languages provide an official description of their
semantics, either in the form of extensive documents written using plain
English1 (e.g. the C standard2 or the ECMAScript specifications for 1 While the problem of interpreting

plain-English specifications into
formal semantics is a widely studied
matter, it is outside the scope of this
manuscript.
2 International Organization for Stan-
dardization, ISO/IEC 9899:2018 -
Information technology – Program-
ming languages – C, 2018 [Int18]

JavaScript3) or as a formal operational semantics (e.g. StandardML4

3 Ecma International, ECMAScript
2023 Language Specification, 2023
[Ecm23]
4 Milner et al., The Definition of
Standard ML, 1997 [Mil+97]

and WASM5).

5 Watt, “Mechanising and verifying
the WebAssembly specification”, 2018
[Wat18]

On the other hand, the soundness of compositional reasoning based
on separation logic is often justified using semantics that already satisfies
a form of frame property6, which we call Frame subtraction. Semantics

6 Yang et al., “A Semantic Basis for
Local Reasoning”, 2002 [YO02]

that satisfy this property are called state-compositional (or simply
compositional) and describe the effects of programs on fractionable
states (defined in §4.2).

However, official descriptions of the semantics of real-world languages
are not compositional, leaving a gap in the justification of the soundness
of compositional symbolic execution frameworks. In §4.3, we propose
a general approach for connecting full semantics to compositional
semantics such that results obtained from analysing programs using
the latter can be formally transferred to the former.

Our approach builds on that used in JaVerT 2.07, but is more 7 Fragoso Santos et al., “JaVerT 2.0:
compositional symbolic execution for
JavaScript”, 2019 [Fra+19]

general as it applies to any semantics, not just that of JavaScript8. The
8 the approach in JaVerT 2.0 applies
to JSIL, an intermediate language for
JavaScript analysis.

result is also similar to that obtained using the weakest-precondition
approach of Iris9, but is formulated as a semantics property, instead of

9 Jung et al., “Iris from the ground
up: A modular foundation for higher-
order concurrent separation logic”,
2018 [Jun+18]

a logical one, enabling its integration within compositional symbolic
execution. Finally, unlike both JaVerT 2.0 and Iris, our approach
supports under-approximate reasoning as well.

While compositionality is proposed as a general construction, the
rest of the framework is defined using a simple language called SIGIL
with built-in support for function calls, if-else and other base constructs.
It is parametric on a state model, which provides a set of states and
a set of actions that modify the state. SIGIL is defined in §4.4, and
basic examples of state models are presented in §4.5.

4.1 Languages and concrete semantics

In this section, we define a generic approach for justifying the soundness
of an analysis performed using a compositional semantics with respect
to the full (or real) semantics of a language L. Such compositional
semantics enable reasoning based on separation logic, including the use
of fictional separation and ghost resources.

22 gillian

Our approach applies to any non-deterministic expression language
with side effects as long as its semantics is total, i.e. it is clearly defined
for all possible inputs. In practice, languages such as C have partial
semantics, where the evaluation of an expression may be undefined.
Here, such undefined behaviours should be treated explicitly as errors
instead of being left undefined. In fact, without characterising undefined
behaviours explicitly, the soundness of an analysis that “finds undefined
behaviours” cannot be formally justified.

We now define the class of languages that we consider. In these
languages, expressions e ∈ Expr are evaluated within a function context
(or program) γ, a variable substitution θ, and a current state σ. For
simplicity, we assume that all languages use a standard countable set of
variables Var ∋ {x, y, . . .}. The result of the evaluation of an expression
is a set of triples (o, v, σ′), where o ∈ {Ok, Err} is an outcome, indicating
if the evaluation was successful or erroneous; v is the resulting value;
and σ′ is the updated state, which may have been modified, since
expression evaluation may be side-effecting. Each element of the set
represents a possible evaluation result, as expression evaluation may
be non-deterministic.

Definition 4.1 (Expression language: syntax and semantics).
A syntax for an expression language is a pair L = (FCtx ,Expr) where:
• FCtx ∋ γ, represents the set of function contexts (or programs); and
• Expr ∋ e, represents the set of abstract syntax trees for program

expressions.
Given an expression language L, a semantics for that language is

a triple SL = (Val ,Σ, eval). Its last component is the expression
evaluation function, eval, which has the following signature10: 10 We write mathematical (meta-

theoretical) function signatures
and function applications using
OCaml syntax to be more homoge-
nous between the theory and the
implementation, even though most
non-deterministic semantics are not
implementable since resulting sets
quickly become infinite. An imple-
mentation may, for example, use
the sequence type seq instead of set,
allowing for depth-first search over
the reachable states or may deter-
ministically select a single outcome
instead of branching.

val eval : FCtx → Subst → Σ → Expr → (O ×Val × Σ) set

where
• Subst = Var ⇀ Val ∋ θ is the set of substitutions, which map

variables to values.
• Σ ∋ σ represents the set of states on which eval operates;
• O = {Ok, Err} is the set of outcomes indicating the status of execu-

tion; and
• Val ∋ v represents the set of values obtainable from evaluation;

Notation. We write γ ⊢ σ, e⇓θo : (v, σ′) to denote (o, v, σ′) ∈ eval γ θ σ e.

Generality This definition is general enough to capture many real-
world languages. While OCaml naturally fits into this class of languages,
imperative languages such as C can also be formulated as expression
language where evaluating statements constantly evaluate to unit.

Furthermore, while we use the term “function context” for elements
of FCtx , the definition does not restrict the content of its elements to
be a set of functions that expressions can call. For instance, context
can be used to capture definitions of types, addresses of global variables,
etc.

Substitution-based language The definition ensures that the seman-
tics of variables is substitution-based11. However, it is possible to carry

11 A similar choice is made in Iris.
Jung provides a thorough argument
for this choice in section 7.3 of his
thesis [Jun20].

compositionality and parametricity 23

a mutable variable store as part of the state σ12. 12 In §8.8, we show how to do so.
However, mutable variable stores
famously complicate separation-logic
reasoning.4.2 Partial commutative monoids

Compositional semantics operate on fragmentable states, i.e. states
which can be decomposed into smaller states, and composed together
into bigger states. We define the mathematical structure that captures
this notion: partial commutative monoids (PCMs)13. 13 Another structure used in Iris,

called resource algebra, would be
more adapted. However, for our
presentation, PCMs are sufficient and
easier to define.

Definition 4.2 (Partial commutative monoid (PCM)).
A partial commutative monoid is a triple (A, 0A, •A)

14, where •A is
14 When unambiguous, we omit the
subscripts and use 0 and •.

a partial, associative, and commutative binary operation on A, and
0A ∈ A is an identity element of this operation.

Notation. We write a# a′, pronounced “a is a disjoint from a′", if a • a′

is defined. In addition, we often call fragments elements of a PCM.

Lemma 4.3 (PCMs: Induced preorder).
A PCM (A, 0A, •) induces a preorder ⪯ on A as follows:

a ⪯ b ⇐⇒ ∃c. b = a • c

Commutative monoids and their induced preorder are the canonical
structures used for defining heap fragments in the literature.15 15 Yang et al., “A Semantic Basis for

Local Reasoning”, 2002 [YO02]

Example The set of partial maps from booleans to booleans B⇀ B
form a PCM. Two partial maps can be composed together if their
domains are disjoint and the null element is the empty map. The
corresponding Hasse diagram is provided in Figure 4.1.

∅

T ↦→ T F ↦→ T F ↦→ F T ↦→ F

T ↦→ T

F ↦→ T

T ↦→ T

F ↦→ F

T ↦→ F

F ↦→ T

T ↦→ F

F ↦→ F

B ⇀ B

Figure 4.1: Hasse diagram for the
partial commutative monoid of
boolean partial maps B ⇀ B.

4.3 Concrete compositional semantics

Equipped with the mathematical tools to define state fragments, we
define compositional semantics and how to connect them with their
full counterparts.

Definition 4.4 (Concrete compositional semantics).
Let L = (FCtx ,Expr) be the syntax for an expression language. SL =

(Val ,Σ, eval) is a compositional semantics for L if Σ is the domain of
a partial commutative monoid (Σ, 0, •), and eval has for signature:
val eval : FCtx → Subst → Σ → Expr → (O ×Val × Σ) set

where O = O ∪ {Miss} = {Ok, Err, Miss} (the new outcome Miss is
addressed below). It is said to be OX-frame-preserving (resp. UX-
frame-preserving) if it satisfies the following frame subtraction (resp.
frame addition) property:

γ ⊢ (σ • σf , e) ⇓θ o : (v, σ′) =⇒
(∃o′, v′, σ′′. γ ⊢ (σ, e) ⇓θ o′ : (v′, σ′′) ∧
(o′ ̸= Miss⇒ σ′ = σ′′ • σf ∧ o = o′ ∧ v = v′))

(Frame subtraction)
We write γ ⊢ (σ, e) ⇓θ o : (v, σ′) if
(o, v, σ′) ∈ eval γ θ σ eγ ⊢ (σ, e) ⇓θ o : (v, σ′) ∧ σ′ # σf ∧ o ̸= Miss

=⇒ γ ⊢ (σ • σf , e) ⇓θ o : (v, σ′ • σf)
(Frame addition)

24 gillian

Definition 4.5 (Compositional semantics soundness).
The compositional semantics SL is said to be OX-sound with respect
to the full semantics SL according to the satisfiability relation |=c if:

γ ⊢ (σ, e) ⇓θ o : (v, σ′) ∧ σ |=c σ =⇒
(∃o′, v′, σ′. γ ⊢ (σ, e) ⇓θ o′ : (v′, σ′) ∧
(o′ ̸= Miss⇒ σ′ |=c σ′ ∧ o = o′ ∧ v = v′))

(OX concrete soundness)
Conversly, it is said to be UX-sound if:

γ ⊢ (σ, e) ⇓θ o : (v, σ′) ∧ σ′ |=c σ′ ∧ o ̸= Miss

=⇒ ∃σ. γ ⊢ (σ, e) ⇓θ o : (v, σ′) ∧ σ |= σ

(UX concrete soundness)

We now provide a detailed interpretation of these properties, includ-
ing the meaning of the new missing outcome.

The missing outcome Evaluating an expression using compositional
semantics may result in a new outcome, called missing and denoted
Miss. This outcome does not exist in the full semantics and is an
artefact of compositionality: it indicates that the state fragment used
for evaluation does not contain enough information to evaluate the
statement.

A missing outcome does not imply anything about the real execution
of the program, but is rather due to an incompleteness in the reasoning
when using the compositional semantics.

Compositional semantics for analysis The four rules provided in the
definitions above sufficiently justify the use of compositional semantics
for bug-finding and verification.

OX concrete soundness states that, if a transition exists starting
from state σ in the full semantics, then a corresponding transition
must exist in the compositional semantics, for any compositional state
modeling σ. In turn, Frame subtraction ensures that if a transition is
found in the compositional semantics, then a corresponding transition
must exist for any smaller state fragment. In both cases, Miss acts
as an escape hatch: either the execution is preserved, or it is missing,
indicating that the state fragment is not sufficient to evaluate the
expression. Together, these properties justify the use of state fragments
in the compositional semantics for verification: if there is a bug to be
found in the full semantics, then it will be found using any fraction of
the corresponding state, provided it contains enough information.

Conversly, UX concrete soundness states that any state reached in
the compositional semantics must correspond to a reachable state in
the full semantics, while Frame addition ensures that outcomes reached
using a fraction of a state is also reachable using any larger state con-
taining it, and does not affect the frame. Dually to over-approximating
properties, these two properties justify the use of compositional seman-
tics for true bug-finding guaranteeing the absence of false positives.

Compositional semantics do not need to use the same set of states
as the full semantics. For instance, compositional states may contain
additional information, called ghost resources. In Part III, we show

compositionality and parametricity 25

that lifetime tokens, imported from the RustBelt16 formalism, become 16 Jung et al., “RustBelt: securing
the foundations of the Rust program-
ming language”, 2017 [Jun+17]

ghost resources in the compositional semantics used in Gillian-Rust. As
such, compositional semantics can be seen as logical executions : where
Iris proves all theorems in a logic proven sound with respect to the full
semantics, compositional symbolic execution moves this reasoning to
the semantics.

Notation. We write SL
c∼
m
SL, for m ∈ {OX, UX}, if SL is a m-frame-

preserving compositional semantics that is m-sound with respect to
SL. We also use m = EX or elide the m when it holds for both m = OX

and m = UX.

Frame is a soundness property Note that the frame conditions are
obtained by specialising the soundness conditions to the relation |=σf

c
between two state fragments such that σ |=σf

c σ′ if σ = σ′ • σf . In
other words, the compositional semantics SL is m-frame-preserving if
∀σf . SL

c∼
m
SL, using |=σf

c .
While this statement has no direct practical implications, it is useful

for understanding frame conditions, and hints at a possible generalisa-
tion of this approach, which is left for future work.

4.4 SIGIL: a parametric intermediate language

Gillian performs its analyses on an intermediate language called GIL17 17 GIL stands for Gillian’s Intermedi-
ate Languagethat is parametric on a state model. This means that some fundamental

operations of the semantics must be provided as parameters. Out of the
box, GIL proposes syntactic constructs for GOTO-based control-flow,
manipulating a mutable store, returning modes for handling exceptions
as well as some legacy features18 such as ϕ-nodes19. 18 These features are used by the

Gillian-JS compiler, but are irrele-
vant to the analyses performed by
Gillian
19 Alpern et al., “Detecting equality
of variables in programs”, 1988
[AWZ88]

For this formalisation, we introduce a simpler (yet more flexible)
language, dubbed SIGIL. It offers simpler control flow based on if-else
and while loops and does not provide a mutable store20.

20 The mutable store can be imple-
mented as part of the state model
(see Chapter 8). However, some of its
properties are not desirable.

In this section, we present SIGIL’s syntax and semantics. The
semantics of SIGIL is parametric on a set of actions A ∋ α which
manipulate the state.

4.4.1 Syntax

The syntax of SIGIL is defined as follows:

z ∈ Z b ∈ B f ∈ Fid x, y, z ∈ Var

v ∈ Val ::= () | z | b | [v⃗]
ep ∈ PExpr ::= x | v | ep ⊕ ep | ⊖ep | [ep⃗]
e ∈ Expr ::= ep | let x = e in e | if e then e else e |

f(e⃗) | ⟨α⟩(e⃗)

FunDef = {f(x⃗) {e} | fv(e) ⊆ x⃗} γ ∈ FCtx = Fid
fin−−⇀ FunDef

SIGIL values v ∈ Val contain the unit value (), integers z ∈ Z,
booleans b ∈ B, and lists of values [v⃗]. Pure expressions, ep ∈ PExpr

are guaranteed to be non-side-effecting, and contain variables x ∈ Var ,
values v ∈ Val , binary operators ep ⊕ ep, unary operators ⊖ep, and

26 gillian

lists of pure expression [ep⃗]. Expressions21, e ∈ Expr contain pure 21 Note that expressions do not
contain loops. These (together with
potential loop invariants required for
compositional verification) could be
compiled away to recursive functions
or handled directly by adding minor
extensions to the formalism.

expressions, let-bindings, if-else, function calls and action calls where
the action name α is between angular brackets. A SIGIL function
f(x⃗) {e} comprises an identifier f ∈ Fid , formal parameters x⃗, and a
body given by an expression e where all free variables of e (those not
bound using let) are formal parameters22. A SIGIL program is a set 22 The side condition on free vari-

ables being formal parameters
trivially avoids the problem of un-
defined variables. It also has other
benefits, specifically when defining
the notion of specification in the next
chapter.

of functions with unique identifiers.

4.4.2 Semantics

We describe the parametric semantics of SIGIL using a combination of
OCaml and mathematical syntax instead of using inference rules. In
doing so, we aim to provide the reader with an immediate understand-
ing of the corresponding implementation without losing mathematical
precision. Furthermore, inference rules can lead to awkward notations
when the absence of semantic transitions is relevant, whereas a mathe-
matically defined evaluation function may explicitly return the empty
set. Finally, it allows for using well-defined syntactic sugar for monadic
let-binding, rendering definitions more concise and intuitive.

In this subsection, we present the intuition behind the execution
monad that underpins expression evaluation, introduce the let-binding
notation in OCaml, and subsequently define the parametric semantics
of SIGIL using these newly defined notions.

The execution monad An evaluation function – whether for full or
compositional semantics – returns a set of triples, with each triple con-
sisting of an outcome, a value and a state, with the outcome indicating
successful or erroneous evaluation. The function returns a set of triples
rather than a single triple because it accounts for all possible executions
under non-determinism. More formally, the signature of an evaluation
function is of the form X → (O × Y) set, which can be seen as a
computation (or Kleisli arrow) in the following execution monad23,24: 23 We do not formally define the

notion of monad, as this presentation
only aims at explaining monadic
composition for the unfamiliar
reader. The literature is full of
accessible definitions of monad from
the category theory or functional
programming perspective (e.g.
[Mil18]), and providing such a
definition would be redundant.
24 The knowledgeable reader may
notice that the execution monad is
obtained by applying the outcome
(or result) monad transformer to the
non-determinism monad.

type ’a exec = (O × ’a) set

(* A computation from ’a to ’b is a function which,
given a value of type ’a returns an execution of type ’b *)

type (’a, ’b) computation = ’a → ’b exec

It is often convenient to compose several such computations to
define more complex computations. Typically, one would describe the
evaluation of a binary operator as: “evaluate the left operand, then
evaluate the right operand, then apply the operator to the results”. A
corresponding implementation would be:
let eval_binop e1 ⊕ e2 =
let v1 = eval e1 in
let v2 = eval e2 in
v1 ⊕ v2

Unfortunately, this definition is invalid, as it does not account for
either operand evaluation failing or branching. However, both effects
should be handled consistently during evaluation: erroneous results
terminate execution while successful branches continue independently.

It is possible to seamlessly compose computations by defining the
function which describes how to apply a new computation to the results

compositionality and parametricity 27

of a first computation. Traditionally, this function is called bind:

let bind (results: ’a exec) (computation: ’a → ’b exec) : ’b exec =⋃︁
res∈results

{

match res with
(* If the previous computation succeeded,

continue by applying the next computation to the result *)
| Ok z → computation z
(* If the previous computation failed

(with an error or missing outcome),
applying a new computation has no effect *)

| Error z → { Error z }
| Miss z → { Miss z }

}

This bind operator allows for a valid definition of binary operator
evaluation in terms of sub-computations:

let eval_binop e1 ⊕ e2 =
bind
(eval e1)
(fun v1 →
bind (eval e2)
fun v2 → { ok: v1 ⊕ v2 })

Monadic let-binding in OCaml While the definition above uses the
bind operator to handle non-determinism and errors systematically,
reading it is somewhat cumbersome. Throughout this thesis, we make
extensive use of the custom let-binding syntax extensions of OCaml25,26 25 The OCaml Team, The OCaml

Manual - Ch. 12.23: Binding Opera-
tors, 2023 [The23b]
26 Custom let-bindings are akin to
the do-notation in Haskell.

to make applications of the bind operator more readable.
In OCaml, it is possible to define custom let* operators, such that

let* x = e in e’ is desugared to bind e (fun x → e’)

Using this let* operator, evaluation of binary operation finally be-
comes natural to read and concise to define while seamlessly handling
errors and non-determinism:

let eval_binop e1 ⊕ e2 =
let* v1 = eval e1 in
let* v2 = eval e2 in
v1 ⊕ v2

This definition corresponds to the following rules:

ok
e1 ⇓ Ok : v1 e2 ⇓ Ok : v2

v1 ⊕ v2 ⇓ Ok : v3

e1 ⊕ e2 ⇓ Ok : v3

left-error
e1 ⇓ o : v1

o ∈ {Err, Miss}
e1 ⊕ e2 ⇓ o : v1

right-error
e1 ⇓ Ok : v1 e2 ⇓ o : v2

o ∈ {Err, Miss}
e1 ⊕ e2 ⇓ o : v2

op-error
e1 ⇓ Ok : v1 e2 ⇓ Ok : v2

v1 ⊕ v2 ⇓ o : v3 o ∈ {Err, Miss}
e1 ⊕ e2 ⇓ o : v3

Finally, we define four utility functions, each corresponding to a
simple computation that either yields a single branch of execution27, 27 ok is the unit operation of our

execution monador no branch at all:

let ok z = { Ok z }
let error z = { Err z }
let miss z = { Miss z }
let vanish = ∅

28 gillian

Semantics of pure expressions For exhaustiveness, we outline a
semantics JepKθ for pure expressions. Note that any deterministic
semantics that does not depend on the state would be appropriate.
For instance, our treatment of binary operators is not short-circuiting,
and both operands are always evaluated regardless of necessity (e.g., in
expressions like true ∧ . . .). However, such design choice is orthogonal
to the rest of the framework28.

28 The syntax and semantics of
pure expressions could be provided
as an additional parameter to the
framework. We avoid this approach
so as not to clutter the presentation
further.

For the sake of brevity, we detail only a selection of cases, with the
omitted cases following analogously. Values are evaluated as them-
selves, substitutions θ are straightforwardly applied to variables, and
binary operators are evaluated without short-circuiting. Note that the
successful evaluation of operands does not guarantee the successful
application of binary operators, such as in the event of division by zero.

let JepKθ =
match ep with
| v → ok v

| x → ok θ(x)
| ep ⊕ e′p →
let* v = JepKθ in
let* v′ = Je′pKθ in

v ⊕ v′

| ...

let v ⊕ v′ =
match ⊕ with
| + → ok v + v′

| / →
if v′ = 0 then
error DivByZero

else
ok v / v′

| ...

The semantics of pure expressions is expressed within the execution
monad, despite its deterministic nature. We do this to avoid introducing
new notations29. 29 The let* operator should be

defined as the bind operator for
the outcome monad, which handles
errors but not non-determinism.Parametric semantics The semantics of SIGIL is parametric on the

type of states and a set of actions that operate on the states. We define
full state models here and compositional state models in the following
subsection to provide these parameters. Using a full state model results
in a full semantics, while using a compositional state model results in
a compositional semantics.

Full state models A full state model S is a module30 with the following 30 Throughout this presentation, we
use the OCaml module syntax to
denote mathematical tuples and
module signatures to denote the
types of these tuples. For instance,
the Full_state_model signature cor-
responds to the tuples of the form
(Σ,A, eval_action) where the last
component has the appropriate signa-
ture. If S is a full state model, we use
module field accessors to denote its
components, e.g., S.eval_action

signature signature:

module type Full_state_model = sig
type Σ (* Type of states *)
type A (* Type of actions *)
val eval_action : A → Σ → Val list → (O ×Val × Σ) set

end

Note Full state models can be seen
as local languages, with the following
language and semantics:

L = (unit, (A×Val list))

S = (Val ,Σ, eval_action)

Notation. We write
σ.α(v⃗)

S
⇝ o : (v, σ′)

if (o, v, σ′) ∈ S.eval_action α σ v⃗, and omit the state model above
the arrow when it is clear from the context.

Semantics of expressions A state model S induces a semantics
SS = (Val ,Σ, eval S.eval_action) for SIGIL. This induced semantics
enables the support of the SIGIL control flow constructions for free,
including function calls, and systematically handles pure expression
evaluation and variable bindings.

Figure 4.2 defines the parametric semantics of SIGIL. The eval func-
tion receives a state model S, a function context γ, a substitution θ, a

compositionality and parametricity 29

let rec eval S γ θ σ e: (O ×Val × Σ) set =
let eval = eval S γ in (* These parameters are constant *)
match e with
| ep →
let (o, v) = JepKθ in
{ (o, v, σ) }

| let x = e1 in e2 →
let* (v, σ′) = eval θ σ e1 in
eval θ [x← v] σ′ e2

| if eg then et else ee →
let* (b, σ′) = eval θ σ eg in
let* () = assert_type b B in
if b then eval θ σ′ et else eval θ σ′ ee

| f(e⃗) →
let* f(x⃗) {e} = γ[f] in
let* (v⃗, σ′) = eval_all θ σ e⃗ in
let θf = [x⃗→ v⃗] in
eval θf σ′ e

| ⟨α⟩(e⃗) →
let* (v⃗, σ′) = eval_all θ σ e⃗ in
S.eval_action α σ′ v⃗

Figure 4.2: Concrete parametric
semantic of SiGIL, the simplified GIL
language. It is polymorphic in the
type of state and can be used with
either a full or a compositional state
model.
We pass the state model as an
argument, even though this is not
valid OCaml. In OCaml, we define a
functor that receives the state model
as a parameter and yields a module
containing the eval function.

state σ and the expression e to evaluate. Pure expressions are evaluated
using the previously-defined function; let-binding evaluates the associ-
ated expression and updates the substitution, potentially shadowing a
previous binding; if-then-else evaluates the guard, performs a dynamic
type check31, and chooses the corresponding branch according to the

31 The assert_type function checks
that a value is of the right type,
successfully returns unit if it does,
and otherwise yields an error.

result; function call fetches the appropriate function definition from
the program, evaluates the arguments32 and executes the function

32 We use an eval_all function,
which evaluates a list of arguments
from left to right and stops if an
error is encountered.

body using the appropriate substitution; and action call evaluates the
arguments and feeds them to the action evaluation function.

4.4.3 Compositionality

Compositional state models Compositional state models are similar
to full state models, but their action evaluation function must return
the Miss outcome and be frame-preserving.

module type Compositional_state_model = sig
type Σ (* Type of state fragments *)
type A (* Type of actions *)
val eval_action : A → Σ → Val list → (O ×Val × Σ) set

(* ... more components, in next chapter *)
end

Notation. We write
σ.α(v⃗)

S
⇝ o : (v, σ′)

if (o, v, σ′) ∈ S.eval_action α σ v⃗, and omit the state model above
the arrow when it is clear from the context.

In addition, a compositional state model S is m-sound with respect
to the full state model S if they share their set of actions (S.A = S.A),
S.Σ, and the action evaluation of S is m-sound with respect to that of
S (as defined by 4.5).

Notation. We write S c∼
m

S, m ∈ {OX, UX, EX} if S is a compositional
state model that has m-frame-preserving and m-sound with respect to
S. We sometimes write S c∼ S as a shorthand for S c∼

EX
S.

30 gillian

Compositional SIGIL semantics The parametric semantics of SIGIL
given in Figure 4.2 is polymorphic on the type of states used. It can be
used with a full state model S or a compositional compositional state
model S.

A fundamental property of SIGIL is that its semantics preserves
compositionality and soundness :

Theorem 4.6 (Preservation of compositionality).

S c∼
m

S =⇒ SS
c∼
m
SS

Notation. Because the parametric semantics of SIGIL is defined inde-
pendently of compositionality, we use the down-facing arrow notation
without the underline to denote the transition relation. However, when
ambiguous, we annotate the arrow with the parameter state model as
superscript. Hence, the following two notations correspond respectively
to a full semantics (left) and a compositional semantics (right):

γ ⊢ (σ, e) ⇓Sθ o : (v, σ
′) γ ⊢ (σ, e) ⇓Sθ o : (v, σ′)

4.5 Examples of state models

We now introduce our main state model examples: the pure state model
and the linear heap. As we define more concepts, these examples will
be reused and extended throughout our presentation of the framework.

4.5.1 The pure state model

Definition The simplest state model one can define corresponds to
the trivial monoid, which contains a unique element:

Σ = {0} ∼= unit

We call it the pure state model, denoted Pure, as it is suited to any
action that is independent of the state (sometimes called state-less).
It can be used to model pure languages such as Haskell or composed
with other state models to provide state-less actions.

In Figure 4.3, we present four state-less actions: skip is a no-op;
nondet non-deterministically returns any value v ∈ Val ; assert errors
if a given condition is not true; and assume vanishes if a given condition
is not true.

Again, the semantics of these actions is described using a combination
of mathematics and OCaml syntax. The semantics of each action are
separated from the primary eval_action function, which is in charge
of validating the number and type of arguments. In later examples, we
only show the individual implementation of each action and omit the
primary eval_action function behaving similarly.

In case of error, these actions return special values such as FailedAssert

or InvalidArguments. These values could be encoded using the native
values of SIGIL (for example, using lists of integers in ASCII encoding).

Compositionality The unit monoid acts as a set of fragments for itself,
and all of the above-defined actions are frame-preserving since they are

compositionality and parametricity 31

module Pure =

(* Unit is the type that only
contains the value () *)

type Σ = unit
val 0 = ()

type A = skip | nondet | assert | assume

let skip σ = ok ((), σ)

let nondet Σ =
{ Ok (v, σ) | v ∈ Val }

let assert σ b =
if b then ok ((), σ)
else error (FailedAssert, σ)

let assume σ b =
if b then ok ((), σ)
else vanish

let eval_action σ α v⃗ =
match α, v⃗ with
| skip, [] → skip σ
| nondet, [] → nondet σ

| assert, [b] when b ∈ B → assert σ b
| assume [b] when b ∈ B → assume σ b
| _ → error (InvalidArguments, σ)

end

Figure 4.3: Formal definition of the
pure state model Pure.

independent of the state. Therefore, using equality as the relation |=c
we have that Pure

c∼ Pure.

Generality Because these actions are independent of the state33, they 33 In fact, they are polymorphic on
the type of state.are compatible with any other state model. In the current implementa-

tion of Gillian, they are provided as commands of GIL and supported
out-of-the-box for any state model.

4.5.2 Linear heap

The linear heap is the heap model classically used in papers describing
separation logics, such as the original Reynolds paper34, or the paper 34 Reynolds, “Separation Logic: A

Logic for Shared Mutable Data
Structures”, 2002 [Rey02]

introducing incorrectness separation logic.35 We define both the full
35 Raad et al., “Local Reasoning
About the Presence of Bugs: Incor-
rectness Separation Logic”, 2020
[Raa+20]

state model and an EX-sound compositional state model, providing
detailed intuition and formal descriptions.

Full states and actions A full linear heap σ ∈ Σ consists of a partial
finite map from natural numbers to either a value v ∈ Val or a special
value ∅ indicating that the heap address has been freed36: 36 Val∅ = Val ⊎ {∅}

Σ = N fin−−⇀ Val∅

For example, the heap σ = [0 ↦→ 0, 1 ↦→ ∅, 3 ↦→ 42] can be represented
as in Figure 4.4, where the cells in blue have been previously
allocated, and the addresses covered with red stripes are yet to be
allocated.

32 gillian

0 ∅ 42 · · ·

0 1 2 3 4 5 6

Unallocated

Figure 4.4: A diagram representing
the heap σ = [0 ↦→ 0, 1 ↦→ ∅, 3 ↦→ 42]

The heap is manipulated through four actions: alloc, load, store,
and free. The alloc operation non-deterministically selects an unal-
located address and initializes its value to the natural number 0. Both
the load and store actions require that the target address has been
previously allocated and not yet freed; load reads the value at the
address, while store updates it. The free action requires that the
targeted cell has been allocated but not freed, and it changes its content
to ∅.

We provide formal definitions for alloc and load; the other actions
are defined analogously. In the following, we assume that accessing a
partial map such as σ using an index a returns either Some v if σ(a) = v,
and None if a /∈ dom(σ):

let alloc σ =
let a = nondet_in (N \ dom(σ)) in
ok (a, σ [a← 0])

let load σ (a : N) =
match σ(a) with
| Some v → ok (v, σ)
| Some ∅ → error (UseAfterFree, σ)
| None → error (NotAllocated, σ) (* a /∈ dom(σ) *)

Compositional state model Linear heap fragments are simply linear
heaps (Σ = Σ) given a partial commutative monoid structure, using the
empty map as the unit element, and disjoint union as the composition
operator; that is, the composition of two linear heap is only defined if
their domains are disjoint. The |=c relation connecting Σ and Σ can
then simply be defined as equality (σ |=c σ ⇐⇒ σ = σ).

However, without care, using the same definition of actions as for
full heaps would lean to a violation of the frame properties. For
instance, trying to load the address 0 in the empty heap ∅ would yield
a (Err, NotAllocated, ∅) but loading the same address in the heap
[0 ↦→ 0] = [0 ↦→ 0] ⊎ ∅ would successfully return the value 0. This
directly breaks the Frame addition property, which requires that, since
the action in the heap ∅ yields a non-Miss outcome, adding more
resources must not interfere with the results.

Effectively, in the compositional state model, absence of an address
in the heap cannot distinguish between an unallocated address and
absence of information about this address, as in Figure 4.5 where such
cells do not convey any information.

0 ∅ 42

0 1 2 3 4 5 6

Figure 4.5: A diagram representing
the heap fragment σ = [0 ↦→ 0, 1 ↦→
∅, 3 ↦→ 42]

To overcome this issue, the load action must return a Miss outcome

compositionality and parametricity 33

instead of Err when the address is not in the domain of the heap.

let load σ (a : N) =
match σ(a) with
| Some v → ok (v, σ)
| Some ∅ → error (UseAfterFree, σ)
| None → miss (MissingCell, σ)

A form of incompleteness Using this compositional state model,
which corresponds to “standard” separation logic, prevents the specifi-
cation of NotAllocated bugs. For compositional bug-finding, presented
in Chapter 7, this means that NotAllocated bugs cannot soundly be
detected. There is no resource capturing that an address has not yet
been allocated, and therefore it is impossible to conclusively reach the
corresponding erroneous outcome. It would be possible to design a
state model which carries a set of non-allocated addresses, but this
would significantly increase the complexity of the reasoning.

Generalisation The linear heap is an instance of the partial map
state model and can be constructed through combinators defined in
Chapter 8. Therefore, we delay the proofs of frame-preservation and
soundness to that chapter.

Chapter 5

Parametric Assertion Language and Specification Execution

The previous chapter defined the notion of compositional semantics and
SIGIL, a parametric intermediate language. This chapter presents a
parametric assertion language for SIGIL and a novel semantics wherein
function calls can be substituted with the execution of SL or ISL
specifications. Specification execution underpins all compositional anal-
yses, allowing each function to be treated independently by leveraging
the specifications of other functions. This offers numerous benefits,
such as reducing the complexity of the analysis, drastically improving
performance and enabling unbounded reasoning.

To perform specification execution, Gillian makes use of the producer-
and-consumer paradigm originally introduced in VeriFast1, and later 1 Jacobs et al., “VeriFast: A Powerful,

Sound, Predictable, Fast Verifier for
C and Java”, 2011 [Jac+11]

reused in Viper2,3 and JaVerT 2.0 4. Producers are often characterised
2 Müller et al., “Viper: A Verification
Infrastructure for Permission-Based
Reasoning”, 2016 [MSS16b]
3 In Viper, produce and consume

are respectively called inhale and
exhale
4 Fragoso Santos et al., “JaVerT 2.0:
compositional symbolic execution for
JavaScript”, 2019 [Fra+19]

as “spatial assumes” as they extend a state fragment with the resource
corresponding to an assertion. On the other hand, consumers are
characterised as “spatial asserts”, as they assert that a state fragment
contains the resources corresponding to an assertion and remove it from
the state. An important part of consumption is the process of matching,
which consists in identifying the fragment of the state that corresponds
to the assertion being consumed, thereby instantiating quantified and
free variables. Executing a specification then corresponds to consuming
its pre-condition before producing its post-condition.

Parametricity Since SIGIL is parametric on a state model, the asser-
tion language must also be. Tool developers using Gillian are required
to provide a set of core predicates, which form the building blocks of this
parametric assertion language. For example, the points-to predicate
l ↦→ v is a core predicate in the linear heap. Our novel formalisation
of Gillian takes parametricity one step further by requiring all atoms
of the logic to be formulated as core predicates, even pure assertions.
This reduces the complexity of the framework’s core, enabling a more
modular design.

Tool developers must implement a producer and a consumer as part
of the compositional state model:

module type Compositional_state_model = sig
type Σ (* Type of states *)

type A (* Type of actions *)
val eval_action : (* See previous chapter *)

type ∆ (* Type of core predicates, §5.1 *)
val produce : (* Signature of the producer, §5.2 *)
val consume : (* Signature of the consumer, §5.3 *)

end

The framework then provides a parametric assertion producer and

36 gillian

parametric assertion consumer, which are in charge of handling variables
and composition. This behaviour mirrors the separation of concerns
between actions and the parametric semantics in SIGIL.

Correctness The framework guarantees the soundness of specification
execution, provided that the core predicate producer and consumer each
satisfy a correctness property. In addition, for UX analysis only, the
core predicates must be strictly exact, meaning that they are satisfied
by at most one state fragment.

Importantly, we formulate the correctness properties of the frame-
work with respect to the semantics of the assertions, i.e. a satisfiability
relation of the form θ, σ |= P . This approach enables the sound use of
specifications proven outside of the framework – for instance, by hand –
as long as the external proof uses the same semantics for the assertion
language.

5.1 Parametric assertion language

SIGIL proposes a minimal parametric assertion language:

P,Q ∈ Asrt ::= ⟨δ⟩(ep⃗; ep⃗) | ∃x. P | P ∗Q

which consists of core predicate assertions, ⟨δ⟩(ep⃗; ep⃗), closed under
existential quantification and separating conjunction. Core predicate
assertions come with a name, δ, and two lists of parameter expressions
respectively called in-parameters (or ins) and out-parameters (or outs).5 5 The concept of ins and outs is

crucial for the matching algorithm,
and we explain it in detail when we
introduce the algorithm itself in §5.3.
Outside of matching, the distinction
between ins and outs is irrelevant.

This assertion language does not explicitly provide some usual sus-
pects, such as pure assertions or the empty assertion, emp. Instead,
these can be defined as core predicates compatible with any state
model, as illustrated shortly. We view our minimalistic approach to
the assertion language as a strength of our framework, as it facilitates
highly modular proofs.

Core predicates To instantiate the above-defined parametric assertion
language, compositional state models are extended with a set of core
predicates, ∆ ∋ δ, that are characterised using a satisfiability relation.

Definition 5.1 (Core predicates).
(∆, |=) is a set of core predicates for Σ if |= is a binary relation connecting
states to triples that comprise a core predicate, a list of in-values and
a list of out-values:

|= ∈ Σ× (∆× Val list× Val list)

We write triples (δ, v⃗i, v⃗o) as ⟨δ⟩(v⃗i; v⃗o), and say that that σ satisfies
or is a model of ⟨δ⟩(v⃗i; v⃗o) iff σ |= ⟨δ⟩(v⃗i; v⃗o).

Example. In the linear heap state model, described in §4.5, we can
define the points-to assertion ⟨PointsTo⟩(a; v), pretty-printed a ↦→ v,
with the relation:

σ |= a ↦→ v ⇐⇒ σ = [a ↦→ v]

In other words, a state fragment satisfies the points-to assertion if it
contains a single cell mapping address a to value v.

parametric assertion language and specification execution 37

Assertion satisfiability Core predicate satisfiability is then lifted to
assertions, using a substitution θ ∈ Subst that maps variables to values.

Definition 5.2 (Assertion satisfiability).

θ, σ |= ⟨δ⟩(e⃗i; e⃗o) ⇔ Je⃗iKθ = Ok v⃗i ∧ Je⃗oKθ = Ok v⃗o ∧ σ |= ⟨δ⟩(v⃗i; v⃗o)
θ, σ |= ∃x. P ⇔ ∃v. θ [x← v] , σ |= P

θ, σ |= P ∗Q ⇔ ∃σP , σQ. θ, σP |= P ∧ θ, σQ |= Q ∧ σ = σP • σQ

A core predicate assertion ⟨δ⟩(e⃗i; e⃗o) is satisfied by state fragment σ
under substitution θ if all of its arguments successfully evaluate using θ
and if σ satisfies the core predicate with the evaluated arguments. For
example, a core predicate of the form ⟨δ⟩(0; 1/0) cannot be satisfied by
any state fragment, as 1/0 cannot be successfully evaluated.6 6 Note that ⟨δ⟩(0; 1/0) is still a

syntactically valid assertion; however,
it has no models (i.e. no state
fragment satisfies it).

The two remaining cases are standard: ∃x. P is satisfied by σ under
θ if we can extend θ with a value for x such that σ satisfies P under this
extended substitution; and P ∗Q is satisfied by σ under θ if σ can be
split into two disjoint state fragments, σP and σQ, which respectively
satisfy P and Q under θ.

Notice again the parallel between SIGIL and its assertion language.
In SIGIL, actions form a variable-free language while the parametric
semantics handles variables and control flow. Analogously, here, core
predicates form a variable-free assertion language while the parametric
satisfiability relation handles variables and composition.

Strict exactness In the context of UX analysis, we require that core
predicates be strictly exact, meaning that they are satisfied by at most
one state fragment.

Definition 5.3 (Strictly exact core predicates).
A core predicate δ is strictly exact if:

σ |= ⟨δ⟩(v⃗i; v⃗o) ∧ σ′ |= ⟨δ⟩(v⃗i; v⃗o) =⇒ σ = σ′

If all core predicates are strictly exact, then assertions without
quantifiers are also strictly exact. As this is the case for any pre-
condition generated by under-approximate bi-abduction, it is not a
substantial limitation.

Lemma 5.4 (Strictly exact assertions).
If all core predicates used in a quantifier-free assertion P are strictly
exact, then P is strictly exact:

∀θ, σ, σ′. θ, σ |= P ∧ θ, σ′ |= P =⇒ σ = σ′

5.2 Producers

Every satisfiability relation on core predicates induces a producer
function, which extends a given state fragment with the resources
corresponding to a given core predicate.

Definition 5.5 (Core predicate producers).
A set of core predicates, (∆ ∋ δ, |=), induces a produce function, defined
axiomatically as:7

7 Observe that there exist two
equivalent perspectives: either we
start from a satisfiability relation and
induce the producer, or provide the
producer and induce the satisfiability
relation. We choose the former, as
it allows us to select a pre-existing
satisfiability relation and justify the
use of specifications proven outside of
the framework (e.g. by hand).produce σ δ vi⃗ vo⃗ = {σ • σδ | σδ |= ⟨δ⟩(v⃗i; v⃗o), σ # σδ}

38 gillian

Notation. We write σ.prodδ(v⃗i, v⃗o)
S
⇝ σ′ for σ′ ∈ S.produce σ δ v⃗i v⃗o,

and omit the state model S when it is clear from the context.

In practice, state models are required to implement the produce

function, and the satisfiability relation serves only as a meta-theoretical
tool to define the semantics of the assertion language. We then lift
these producers from core predicates to assertions using the parametric
assertion producer, defined in Figure 5.1 below:

let rec produce_asrt S θ σ P: Σ set =
match P with
| ⟨δ⟩(e⃗i; e⃗o) → (

match Je⃗iKθ, Je⃗oKθ with
| Ok v⃗i, Ok v⃗o → S.produce σ δ v⃗i v⃗o
| _ → vanish)

| ∃x.Q →
let* v = nondet () in
produce_asrt S θ [x← v] σ Q

| P ∗Q →
let* σ′ = produce_asrt S.produce θ σ P in
produce_asrt S θ σ′ Q

Figure 5.1: Formal definition of the
parametric assertion producer.

The parametric assertion producer delegates the production of core
predicates to the state model producer, non-deterministically instanti-
ates existential variables with all possible values, and produces both
operands of a separating conjunction in sequence.8 Note that the

8 In the definition, let* corresponds
to the bind function of the set
monad, meaning that it handles
non-determinism, but not errors:

bind x f =
⋃︂
y∈x

f(y)

This is sufficient because production
cannot throw an error.

substitution is required to cover all free variables of the assertion (i.e.
fv(P) ⊆ dom(θ)) for the producer to be well-defined. This is analogous
to the semantics of expressions, where the substitution has to cover all
variables used in the expression.

Notation. We write σ.prodP (θ)
S
⇝ σ′ for

σ′ ∈ produce_asrt S θ σ P

and omit the state model S when it is clear from context.

Importantly and straightforwardly, the parametric producer can be
proven to extend a given state fragment precisely with the resource
corresponding to the provided assertion.

Theorem 5.6 (Correctness of assertion production).
Let Σ be a set of state fragments, ∆ an associated set of core predicates,
S.produce be the producer for ∆, and P be an assertion that only
contains core predicates from ∆. Then:

produce_asrt S θ σ P = {σ • σP | θ, σP |= P, σ # σP }

5.3 Consumers and Matching

Consumers are more complex than producers, as they fulfil two different
roles. First, they perform matching : the process of identifying the
fragment of the state and free variables that satisfies the input assertion.
Then, they consume this state fragment, meaning that it is removed
from the output state.

To perform matching without backtracking, Gillian uses an approach
based on parameter modes9: the in-parameters of a core predicate are

9 Nguyen et al., “Runtime Checking
for Separation Logic”, 2008 [NKC08]

parametric assertion language and specification execution 39

used to learn its out-parameters. Before an assertion is consumed, its
core predicates are re-ordered into a set of steps. The new ordering of
these steps must be such that the variables required to evaluate the
in-parameters of a core predicate are known before it is consumed, and
sufficient variables are learnt for the next to be consumed.

Analogously to producers, the state model is required to implement
a core predicate consumer, while the framework provides a parametric
assertion consumer that handles variables and separating conjunction.

5.3.1 Core predicate consumers

A core predicate consumer is a function which, given a state σ, a core
predicate δ, and in-parameters v⃗i, returns a logic outcome o ∈ O+

l =

{Ok, Miss, Lfail}, a list of out-parameters v⃗o, and a frame state frag-
ment σ′. The outcome is either Ok for success, Miss when the state
fragment does not contain sufficient resources, or Lfail for logical fail-
ure, described in detail shortly. In case of success, it is guaranteed that
the frame state was obtained by removing a state fragment satisfying
⟨δ⟩(v⃗i; v⃗o) from the input state.

∅

T ↦→ T F ↦→ T F ↦→ F T ↦→ F

T ↦→ T

F ↦→ T

T ↦→ T

F ↦→ F

T ↦→ F

F ↦→ T

T ↦→ F

F ↦→ F

Σ

σ.cons ↦→(T, T)→ Ok : _
σ.cons ↦→(T, T)→ Miss : _
σ.cons ↦→(T, T)→ Lfail : _

Figure 5.2: Outcomes of consuming
the core predicate T ↦→ T in the
simplified linear heap with boolean
addresses and values, when the con-
sumer is complete and the allocation
domain is ⊥.

Definition 5.7 (Core predicate consumers).
A core predicate consumer is a function with the following signature

type O+
l = Ok | Miss | LFail

val consume : Σ → ∆ → Val list → (O+
l ×Val list × Σ)

Notation. We write

σ.consδ(vi⃗)
S→ ol : (v, σ

′)

iff

S.consume σ δ v⃗i = (ol, v, σ
′)

and omit the state model S when it
is clear from the context.

It must satisfy the following property, guaranteeing that in case of
success, a state fragment satisfying the core predicate has been removed
from the state:

σ.consδ(vi⃗)→ Ok : (v⃗o, σ
′)

=⇒ ∃σδ. σ = σ′ • σδ ∧ σδ |= ⟨δ⟩(v⃗i; v⃗o)
(CP Consuming)

Consumers may return yet another outcome called logical failure in
addition to success and missing. A logical failure is either due to a
logical mismatch or to an incompleteness of the consumer, which we
now explain.

Logical mismatch A logical mismatch corresponds to a fundamental
incompatibility between the state fragment and the consumed resource.
More formally, σ.consδ(v⃗i)→ _ must fail if there is no completion of
the state of which a fragment satisfies the core predicate:

∀v⃗o, ∀σ′ ⪰ σ. ∀σ′′ ⪯ σ′. σ′′ ̸|= ⟨δ⟩(v⃗i; v⃗o)

For instance, take a simplified version of the linear heap, where
addresses and values are booleans instead of natural numbers and
values. The outcomes of consuming the core predicate10 T ↦→ T from 10 We assume that both address and

value are in-parameters for simplicity.
Using the core predicate notation, it
would be ⟨BPointsTo⟩(T, T;)

either of the nine possible state fragments are depicted in Figure 5.2.
If the binding T ↦→ T is in the heap, it is removed, and consumption
succeeds. If there is no binding for address T, then there exists a
state fragment σf (namely, σf = [T ↦→ T]) which can be added to
the current state fragment σ such that T ↦→ T can be consumed from
σ • σf . Hence, the corresponding outcome is Miss. The last case is the

40 gillian

“non-fixable” case, where the state contains the binding T ↦→ F, which
is fundamentally incompatible with the required resource and yields a
logical failure.

Completeness Core predicate consumers may fail to consume a re-
source even when it is present in the state fragment. More formally,
consumers may be incomplete according to the following definition of
completeness:

Definition 5.8 (Completeness of core predicate consumers).
A core predicate consumer is complete if it satisfies the following
property:

σδ |= ⟨δ⟩(vi⃗; vo⃗) ∧ σ # σδ

=⇒ (σ • σδ).consδ(vi⃗)→ Ok : (vo⃗, σ)
(CP Completeness)

For instance, a consumer that always yields a logical failure is
valid according to Definition 5.7, but it is incomplete. In practice,
completeness may be limited by the complexity of the state model.
Furthermore, since consumers must return a single outcome, core
predicates that may have several matches in the heap (called non-
precise predicates in VeriFast) do not have a complete consumer.

5.3.2 Parametric assertion consumer

The parametric assertion consumer lifts consumption from core predi-
cates to assertions by handling composition. In addition, it performs
matching : the process of extending the substitution to instantiate the
free and existentially quantified variables of the assertion.

The assertion consumer receives a state fragment σ, an assertion
P and a partial substitution θ and returns a triple containing a logic
outcome, an extended substitution, and a state fragment.

val consume_asrt: Σ → Asrt → Subst → (O+
l × Subst × Σ)

Before presenting the formal definition of the parametric assertion
consumer, we introduce matching plans, which guide the consumption
algorithm.

Matching plans In the consumption algorithm presented in Figure 5.3,
core predicates are consumed one by one. Throughout consumption,
the substitution must contain enough variables to evaluate all the in-
parameters of the core predicate at hand. At each step, the substitution
is extended with information learned from the outcome of the core
predicate consumer.

A matching plan, obtained using a plan function of the below signa-
ture, is an ordering of the core predicates of an assertion, which allows
for the substitution to maintain the required property. Each step of the
matching plan indicates how to learn new variables from the outcome
of the core predicate consumer.

val plan : Subst → Asrt → (Asrt × (Var × PExpr) list) list result

For example, consider: the assertion P = y ↦→ 1024 ∗ x ↦→ y + 1,
where a ↦→ v is syntactic sugar for ⟨PointsTo⟩(a; v); the heap σ = [0 ↦→

parametric assertion language and specification execution 41

42, 41 ↦→ 1024]; and substitution θ = [x ↦→ 0]. There is a unique value
that can be assigned to y for this assertion to hold, namely 41. The
goal of matching is to find this value, and the following matching plan
guides this discovery:

plan θ P = Ok : [(x ↦→ y+ 1, [(y,O1 − 1)])

(y ↦→ 1024 , [])]

This plan consists of two steps. It indicates that the core predicate
x ↦→ y + 1 should be consumed first. Doing so is possible since the
substitution contains x, meaning it is possible to evaluate the in-
parameter of the predicate and call its consumer. The consumer will
remove the cell 0 ↦→ 42 from the heap (since θ(x) = 0) and return the
value 42.

Next, the first step indicates that the variable y should be learned
from O1 − 1, where O1 is a placeholder variable corresponding to the
first (and, here, only) result of the previous consumption. In this
example, O1 takes the value 42, and the substitution is extended with
the binding y ↦→ 41. Now that the substitution knows y, the second
step can be performed, and the assertion is successfully consumed.

Interestingly, matching plans do not have to be “correct” for the
consumption algorithm to be sound. The only requirement is that
the steps are a permutation of the atoms of the input assertion. For
instance, an incorrect matching plan, which assigns O1 instead of O1−1

to y in the first step, would lead to a logical failure but never to an
unsound success.

To avoid cluttering an already extensive presentation, we do not pro-
vide a detailed formalisation of matching plans and their construction
in this manuscript. Should the reader be interested, we refer them to
the corresponding paper.11 11 Lööw et al., “Matching Plans for

Frame Inference in Compositional
Reasoning”, 2024 [Löö+24b]

Note that the plan function is only defined for quantifier-free asser-
tions. We will explain shortly how to handle existential quantifiers.

let learn θo θ (x, e) =
if x ∈ dom(θ) then lfail () else
let* v = JeKθ∪θo in
ok θ [x← v]

let consume_step S (θ, σ) (⟨δ⟩(e⃗i; e⃗o), learnings) =

1 let* v⃗i = Je⃗iKθ in

2 let* (v⃗o, σ′) = S.consume σ δ v⃗i in

3 let θo = [O⃗ ↦→ v⃗o] in

4 let* θ′ = fold_outcome (learn θo) θ learnings in

5 let* v⃗′o = Je⃗oKθ′ in

6 let* () = assert_all_equal v⃗o v⃗′o in

7 ok (θ′, σ′)

let consume_asrt S σ θ P =
let* mp = plan θ P in
fold_outcome (consume_step S) (θ, σ) mp

Figure 5.3: Formal description of the
parametric assertion consumer.

Formal description Figure 5.3 formally defines the parametric asser-
tion consumer. The consume_asrt function calls the plan function and
iterates over the created matching plan. It applies the consume_step

42 gillian

function to each step of the plan, accumulating an extended substi-
tution and a partially consumed state fragment at each step. More
formally, if θ0 and σ0 are the inputs to the consumption algorithm, the
fold_outcome operation iteratively applies each step mpk of the matching
plan, obtaining a (θk, σk) from consume_step S (θk−1, σk−1) mpk. If
any step results in a logical failure or a missing outcome, the entire
consumption process fails.12

12 In other words, the fold_outcome
function is the foldM function in the
outcome monad.

The consume_step is the main workhorse of the algorithm, and we
detail it line by line:
1 The in-parameters e⃗i of the core predicate are evaluated under the

current extension of substitution θ, yielding a set of in-values v⃗i.
This requires that the substitution covers all the variables contained
in the in-parameters. If evaluation fails, the entire consumption
process fails.

2 The core predicate is consumed using the the in-values v⃗i, and yield-
ing a set of out-values v⃗o and a partially consumed state fragment
σ′.

3 A substitution θ0 is created, mapping distinct, fresh placeholders to
the out-values obtained from the core predicate consumer.

4 The substitution is extended: each pair (x, e) in the learnings list
is applied to iteratively extend the substitution, using the learn

function. Given the placeholder substitution θo, the current substi-
tution θ and a pair (x, e), a new substitution is obtained by binding
x to the result of evaluating e under the substitution θo ∪ θ. If the
variable is already in the substitution or if evaluation fails, the entire
consumption process fails.

5 Using this newly extended substitution, the out-values e⃗o of the core
predicate δ to consume are evaluated, yielding a set of out-values v⃗′o.

6 It is checked that the out-values v⃗o obtained from the core predicate
consumer match the values v⃗′o expected by the assertion, according
to the learned substitution. This check is crucial for the soundness
of the algorithm, ensuring that learning was correctly performed and
that uses of the same variables across the assertion are consistent.

7 If all the previous steps are successful, the extended substitution
and the partially consumed state fragment are returned.

Notation. We write

σ.consP (θ)
S→ o : (θ′, σ′)

if consume_asrt S σ P θ = (o, θ′, σ′), and omit the state model S
when it is clear from the context.

Properties of the assertion consumer The assertion consumer pre-
serves the properties of the core predicate consumers.

Theorem 5.9 (Assertion consumer).
Let S.consume be a valid core predicate consumer according to Defini-
tion 5.7. Then, consume_asrt S satisfies the following properties:

σ.consP (θ)
S→ Ok : (θ′, σ′)

=⇒ ∃σP . σ = σ′ • σP ∧ θ′, σP |= P
(Consuming)

parametric assertion language and specification execution 43

σ.consP (θ)
S→ Ok : (θ′, σ′)

=⇒ θ ⊆ θ′
(Matching)

The Consuming property lifts the CP Consuming property to the
assertion level: if consumption is successful, the removed state fragment
σP satisfies the consumed assertion P under the extended substitution
θ′. This property immediately entails that θ′ must cover all free
variables of P .

Matching, on the other hand, states that the obtained substitution
θ′ must be an extension of the input substitution θ. It indicates that
the consumer must have found a proper match for the assertion without
changing the values of the already known variables.

Existential quantifiers The planning algorithm is only defined for
quantifier-free assertions. However, the assertion consumer may still
consume assertions with existential quantifiers. This is done by first
transforming the assertion into a normal form ∃x⃗. P , where P is
quantifier-free13. 13 This is always possible modulo

some renaming of existentially
quantified variables.

Given an assertion in this normal form, the plan function creates a
matching plan for P . According to the Consuming property, in case
of success, the consumed fragment σP satisfies P under the extended
substitution. Therefore, it satisfies ∃x⃗. P under the same substitu-
tion. Moreover, the extended substitution provides witnesses for all
existentially quantified variables.

Completeness The assertion consumer also preserves the completeness
of the core predicate consumer.

Theorem 5.10 (Assertion consumer completeness).
Given a complete (according to Definition 5.8) core predicate consumer
S.consume, the assertion consumer consume_asrt S is also complete.14 14 This theorem assumes that the

creation a matching plan cannot
fail if all the free variables of the
assertions are already known, and
that, in this case, the list of learnings
is always empty.

Formally, it satisfies the following property:

θ, σP |= P ∧ σ # σP

=⇒ ∃(σ • σP).consP (θ)
S→ Ok : (θ, σ)

(Consume completeness)

5.4 Specification semantics

The primary purpose of consumers and producers is to enable specifica-
tion execution. Instead of executing the body of the called function, the
caller function can execute a (valid) specification of the called function.
This is a crucial feature of separation logic, often referred to as function
compositionality.

For the first time, Gillian offers a unified engine, allowing for the use
of either separation logic for OX analysis or incorrectness separation
logic for UX analysis.

Specifications SL and ISL specifications capture both successful and
erroneous executions (but not Miss executions) and hence take the form
of quadruples, reusing a notation commonly found in the literature15.

15 O’Hearn, “Incorrectness logic”,
2019 [OHe19]; Raad et al., “Local
Reasoning About the Presence of
Bugs: Incorrectness Separation
Logic”, 2020 [Raa+20]; and Maksi-
mović et al., “Exact Separation Logic:
Towards Bridging the Gap Between
Verification and Bug-Finding”, 2023
[Mak+23]Reusing Iris notation, post conditions use an explicit binder r to refer

44 gillian

to the return value of the expression. The semantics of specifications is
then canonical.

Definition 5.11 (Specifications: SL/ISL Quadruples).
Given a program γ, an expression e satisfies the separation logic quadru-
ple { P } e { Ok : r. QOk }{ Err : r. QErr } if all executions starting
from a state satisfying P either successfully terminate in a state that
satisfies QOk, erroneously terminate in a state that satisfies QErr, or
diverge:

γ |= { P } e { Ok : r. QOk }{ Err : r. QErr } ≜ ∀σ, σ′, θ, o, v.
θ, σ |= P ∧ γ ⊢ σ, e ⇓θ o : (v, σ′) =⇒
(o ̸= Miss ∧ θ [r← v] , σ′ |= Qo)

Similarly, expression e satisfies the incorrectness separation logic
quadruple [P] e [Ok : QOk][Err : QErr] if every state satisfying QOk

is reachable from a state satisfying P through a successful execution of
e, and every state satisfying QErr is reachable from a state satisfying
P through an erroneous execution of e:

γ |= [P] e [Ok : r. QOk][Err : r. QErr] ≜ ∀θ, σ′, o, v.
θ [r← v] , σ′ |= Qo =⇒ (∃σ. θ, σ |= P ∧ γ ⊢ σ, e ⇓θ o : (v, σ′))

We sometimes use the notation ⟨⟨ P ⟩⟩ e ⟨⟨ Ok : r. QOk ⟩⟩⟨⟨ Err : r. QErr ⟩⟩
to denote a specification independently of its kind. In addition, we use
the triple notation ⟨⟨ P ⟩⟩ e ⟨⟨ o : Q ⟩⟩ when the specification describes
only a single outcome (i.e. the other outcome has condition false)
and omit the outcome when it is irrelevant.

Quadruples specify the behaviour of expressions, and we overload
the notation to specify the behaviour of functions.

Definition 5.12 (Function specifications).
Given a program γ, a function f(x⃗) {e} ∈ γ16 satisfies the (incorrect- 16 Remember from the syntax of

SIGIL (§4.4) that function definitions
require all free variables of the body
to be formal arguments.

ness) separation logic quadruple ⟨⟨ P ⟩⟩ f ⟨⟨ Ok : r. QOk ⟩⟩⟨⟨ Err : r. QErr ⟩⟩
if its body satisfies the quadruple:

γ |= ⟨⟨ P ⟩⟩ f(x⃗) ⟨⟨ Ok : r. QOk ⟩⟩⟨⟨ Err : r. QErr ⟩⟩ ≜
γ |= ⟨⟨ P ⟩⟩ e ⟨⟨ Ok : r. QOk ⟩⟩⟨⟨ Err : r. QErr ⟩⟩

Specification execution A keystone of our framework is its ability
to execute specifications. The algorithm is standard and inspired by
VeriFast, Viper and JaVerT 2.0. Figure 5.4 offers a simplified visual
representation, ignoring substitutions and outcomes, of executing a
specification ⟨⟨ P ⟩⟩ ⟨⟨ Q ⟩⟩. First, the pre-condition P is consumed
from the state, leaving the rest of the state, often called the frame.
Then, the post-condition Q is produced on top of the frame. SL and
ISL specifications are executed similarly, though they differ in the
guarantees they provide.

The formal definition of the specification execution algorithm is pro-
vided in Figure 5.5. Specification execution is always performed in the
context of a state model S, which provides the producer and consumer
for the core predicates used in the specification. The return value is
non-deterministically initialised to any value and later constrained by

parametric assertion language and specification execution 45

Frame Frame Frame

P Q
consume P produce Q

Figure 5.4: Visual representation
of the execution of a specification
⟨⟨ P ⟩⟩ ⟨⟨ Q ⟩⟩

the producer; both success and error outcomes are produced. Executing
specifications may yield any outcome in Ol = {Ok, Err, Miss, Lfail},
which keep their usual meaning. Lfail and Miss can occur during the
consumption of the pre-condition, while Ok and Err occur when the
specification has been succesfully executed.

let execute_spec S σ θ S =

let ⟨⟨ P ⟩⟩ ⟨⟨ Ok : r. QOk ⟩⟩⟨⟨ Err : r. QErr ⟩⟩ = S in
let* (θ′, σ′) = consume_asrt S.consume θ σ P in
let* v = nondet () in
let oks =
let oks_states = produce_asrt S.produce (θ′ [r← v]) σ′ QOk in
{ Ok : (v, σ′′) | σ′′ ∈ ok_states }

in
let errs =
let err_states = produce_asrt S.produce (θ′ [r← v]) σ′ QErr in
{ Err : (v, σ′′) | σ′′ ∈ err_states }

in
oks ∪ errs

Figure 5.5: Formal definition of the
algorithm used to execute specifica-
tions

Notation. We write σ.specS(θ)
S
⇝ ol : (v, σ

′) if

(ol : (v, σ
′)) ∈ execute_spec S σ θ S

and omit the state model S when it is clear from the context.

Specification execution of an expression e can always be used instead
of executing the expression itself, yielding different guarantees depend-
ing on the specification. As expected, SL specifications guarantee no
path is dropped, ensuring the absence of false negatives. In contrast,
ISL specifications guarantee that no path is added, ensuring the absence
of false positives. In both cases, logical failures and missing outcomes
are inconclusive: they indicate a failure in the reasoning but guarantee
neither the existence nor the absence of a bug. Therefore, during OX
analysis, these outcomes should be flagged as potential bugs while
ignored and dropped during UX analysis.

Theorem 5.13 (Specification execution: soundness).
Let γ be a program and S = { P } e { Ok : r. QOk }{ Err : r. QErr }
be a separation logic quadruple. If S is valid in γ and e can be executed
in γ starting from a state σ under a substitution θ, then execution of
S in the same state σ and substitution yields at least one result. In

46 gillian

the absence of failures, all paths are preserved:

γ |= S ∧ γ ⊢ σ, e ⇓θ o : (v, σ′) =⇒
(∃oS , vS , σS . σ.specS(θ)⇝ oS : (vS , σS)

∧ (oS /∈ {Miss, Lfail} =⇒ (oS = o ∧ vS = v ∧ σS = σ′)))

(OX spec. exec. soundness)
If, conversely, S = [P] e [Ok : r.QOk][Err : r. QErr] is an in-

correctness separation logic quadruple, and then all states that are
successfully reachable using the specification execution are also reach-
able using the expression execution:

γ |= S ∧ σ.specS(θ)⇝ o : (v, σ′) ∧ o /∈ {Miss, Lfail} =⇒
γ ⊢ σ, e ⇓θ o : (v, σ′)

(UX spec. exec. soundness)
Note that the guarantees provided by UX specification execution are
under the assumption that all core predicates used are strictly exact.

Specification contexts The specification semantics allows for replac-
ing the execution of the callee’s body with the execution of their
specifications. While the concrete semantics uses a function context,
which registers the implementation of each function, the specification
semantics uses a specification context, which registers function specifi-
cations.

Definition 5.14 (Specification Context).
A specification context Γ ∈ SCtx = Fid

fin−−⇀ Spec is a partial finite
function that maps function identifiers to specifications (SL or ISL
quadruples).

Definition 5.15 (Function Environment).
A function environment (γ,Γ) is a pair comprising an implementation
context γ and a specification context Γ. It ism-valid, written m|= (γ,Γ) if
it contains only specifications of the mode m (i.e. SL if m = OX and ISL
if m = UX), and if every specification in Γ contains an implementation
in γ that satisfies it.

Specification semantics We can finally formally provide the specifi-
cation semantics in Figure 5.6, in the form of an eval function that
receives an additional Γ parameter.17 For all cases except the function 17 This new eval function behaves

exactly like the “non-specification”
semantics if given an empty specifica-
tion context Γ = ∅. Therefore, we do
not give it a new name, considering it
an extension of eval.

call, the specification semantics is defined identically to the concrete
semantics. In the function-call case, the specification semantics checks
if the context includes a specification of the callee function and applies
this specification without resorting to the callee’s implementation. If
the context does not hold such a specification, the semantics resort to
the implementation, as in the concrete semantics.

This approach is in line with Gillian’s implementation. However, it
diverges from the approaches adopted by Viper and VeriFast, which
restrict execution strictly to specification calls and prohibit defaulting
to the execution of the function body.

Notation. We write γ,Γ ⊢ σ, e ⇓Sθ ol : (v, σ) if

(ol, v, σ) ∈ eval S.eval_action γ Γ θ σ e

and omit the state model S when it is clear from context.

parametric assertion language and specification execution 47

let rec eval eval_action γ Γ θ σ e =
match e with
| f(e⃗) →
let* (v⃗, σ′) = eval_all θ σ e⃗ in
let* f(x⃗) {e} = γ[f] in
let θf = [x⃗→ v⃗] in
match Γ(f) with
| Some spec →
execute_spec σ′ θf spec

| None →
eval θf σ′ e

| ...

Figure 5.6: Formal definition of the
specification semantics

Soundness If the specification context Γ is populated with valid
SL specifications, the specification semantics can be soundly used for
verification. Similarly, if it is populated with ISL specifications, it can
be soundly used for true-bug finding.

Theorem 5.16 (Specification semantics: soundness).
If m|= (γ,Γ), then one of the following two properties hold, depending
on the mode of execution m:

OX|= (γ,Γ) ∧ γ ⊢ σ, e ⇓θ o : (v, σ′) =⇒ (∃o′, σ′′, v′.
γ,Γ ⊢ σ, e ⇓θ o : (σ′, v′)
∧ (o′ /∈ {Miss, Lfail} ⇒ (o′ = o ∧ σ′′ = σ′ ∧ v′ = v)))

(Spec Sem. OX soundness)

UX|= (γ,Γ) ∧ γ,Γ ⊢ σ, e ⇓θ o : (v, σ′) ∧ o /∈ {Miss, Lfail}
=⇒ γ ⊢ σ, e ⇓θ o : (v′, σ′)

(Spec Sem. UX soundness)

Again, notice that the guarantees provided by the specification
semantics only apply for outcomes o ∈ {Ok, Err}. Logical failures and
missing outcomes correspond to reasoning for errors and do not provide
any guarantees: using SL specifications, they are inconclusive and
should be flagged as a potential bug. Similarly, they do not prove the
presence of a bug when using ISL specifications and should be ignored.

{ x ↦→ 1 ∗ (x+ 1) ↦→ 0 }
f(x) { store(x, 0) }

{ x ↦→ 0 ∗ (x+ 1) ↦→ 0 }

Figure 5.7: An example of over-
specification

Moreover, missing outcomes obtained while using specifications do
not guarantee a missing outcome in the compositional semantics since
functions may be over-specified, i.e. the pre-condition might require
more resources than needed to execute the body. See, for example,
Figure 5.7, where function f is over-specified and would yield a missing
outcome when executed without the cell at address x+ 1, even though
this cell is not required for its execution.

5.5 Examples

Remember the pure state model and the linear heap presented in §4.5.
For both state models, we define core predicates with their consumers
and producers.

5.5.1 Pure state model: logic

A simple core predicate The pure state model has a unique state 0,
and 4 actions: skip, nondet, assume and assert. We define the Pure

48 gillian

core predicate, with a unique in-parameter and no out-parameters such
that ⟨Pure⟩(b;) holds if and only if b is true:

σ |= ⟨Pure⟩(b;) ⇐⇒ b = true

Its consumer and producer are defined as follows:

module Pure = struct
type Σ = unit
let 0 = ()

(* See §4.5.1 for actions *)
(* ... *)

type ∆ = Pure

let consume σ Pure [b] =
if b then ok ([], σ)

else lfail ([], σ)

let produce σ Pure [b] =
if b then ok σ
else vanish

end

The producer is defined in the same way as the assume action,
confirming the intuition that producers are a generalisation of assume

to spatial resources. Similarly, the consumer is a spatial assert, though
it yields a logical failure instead of an error when failing.

It can be trivially shown that the producer and consumer defined
above satisfy definitions Definitions 5.5 and 5.7. Moreover, all of these
core predicates are strictly exact, as they are only satisfied by the state
0, making them suitable for UX analysis.

Advanced core predicates Using the above-defined Pure core predi-
cate with the planning algorithm can be limiting. Take, for example,
the following assertion:

{ ∃z. ⟨Pure⟩(x+ y = z;) ∗ ⟨Pure⟩(z ̸= 0;) }

Consider the case where x and y are in the domain of the initial
substitution θ, but z is not. Since Pure does not have any out-parameter,
there is no way to learn the value of z, and it is impossible to create a
matching plan.

However, x + y is the only value of z that satisfies this assertion.
Ideally, we would like the consumption algorithm to be able to infer
this value. To do so, another core predicate can be used:

⟨_ + _ = _⟩(v0, v1; v2), denoted v0 + v1 = v2

such that 0 |= v0 + v1 = v2 ⇔ v0, v1, v2 ∈ N ∧ v0 + v1 = v2

let produce_plus_equal σ n0 n1 n2 =
if n0 + n1 = n2 then ok σ
else vanish

let consume_plus_equal σ n0 n1 =
ok n0 + n1

Using this predicate, we can define the following equivalent but
plannable assertion:

{ ∃z. ⟨_ + _ = _⟩(x, y; z) ∗ ⟨Pure⟩(z ̸= 0;) }

parametric assertion language and specification execution 49

Following the same approach, it is possible to inductively define
a family of core predicates that directly match the syntax of simple
expressions and leverage algebraic rules to create arbitrarily complex
plannable pure core predicates.

The implementation of Gillian In the current implementation of
Gillian, pure assertions are part of the core assertion language and
need not be implemented as core predicates. Users may write arbitrary
expressions, and Gillian implements a set of heuristics to derive in-
and out-parameters from each pure assertion while it builds matching
plans.

To illustrate, let us reuse the example of the assertion x + y = z.
When building a matching plan, if {x, y} ⊆ dom(θ), Gillian will infer
that the ins are x and y and that the out is z. On the other hand,
if {x, z} ⊆ dom(θ), it will infer that x and z are ins and y is an out,
learning y = z− x.

This approach allows for great flexibility and alleviates the burden
of declaring the ins and outs of each pure assertion without losing
expressivity.

5.5.2 Linear heap: logic

The linear heap, initially presented in §4.5.2, comes with two core
predicates:
• the ⟨PointsTo⟩(a; v) core predicate, also denoted a ↦→ v, describes

the heap fragment with a single cell at address a, which contains
value v; and

• the ⟨Freed⟩(a;) core predicates, also denoted a ↦→ ∅, describes the
heap fragment with a single freed cell at address a.

The corresponding satisfiability relation is described below:

σ |= a ↦→ v ⇐⇒ σ = [a ↦→ v]

σ |= a ↦→ ∅ ⇐⇒ σ = [a ↦→ ∅]

For conciseness, we only present the producer and consumer for the
points-to assertion, the freed being analogous.

Producer Points-to assertions denote exclusive ownership of a given
heap address. Recall that an address a is considered owned if it is
already in the domain of the heap, a ∈ dom(σ). Producing another cell
at address a should vanish since no address can be owned twice. In the
case where a is not already in the heap, it can be safely added:
let produce_cell σ a v =
match σ(a) with
| Some v → vanish
| Some ∅ → vanish
| None → σ [a← v]

Consumer The PointsTo core predicate has one in-parameter, the
address, and one out-parameter, the contained value. Therefore, its
consumer receives only an address and must return the value contained
in the consumed cell in case of success. The consumer behaves the
same as the load function provided in §4.5.2, except that:

50 gillian

• when the address is owned and not freed, the cell is removed from
the heap; and

• when the address is freed or not allocated yet, it yields a logical
failure instead of an error due to the mismatch between the required
resource and the content of the heap.

let consume_cell σ a =
match σ(a) with
| Some v, _ → ok (v, σ \ a)
| Some ∅, _ → lfail (UseAfterFree, σ)
| None → lfail (UseAfterFree, σ)

Assertions and state representation At this point, the reader may
be wondering why Gillian separates assertion and state representation.
In the case of the linear heap, both happen to have almost the same
representation (modulo the fact that the state representation is map,
and can be looked up more efficiently than an assertion). In Part II,
we show that this separation is crucial for the implementation of more
complex state models. In Gillian-C, core predicates act as a simple view
of the state, which can be described by the user through assertions,
while the representation of the state is more low-level and enables more
automations without requiring knowledge from the user.

Chapter 6

Symbolic execution

In the previous chapters, we introduced compositional execution and
a parametric separation logic with an alternative concrete semantics
in which function calls can be substituted with specification execution.
However, both semantics are non-deterministic and often yield a
large or infinite number of branches, making their outcomes impossible
to search exhaustively.

Symbolic execution addresses this issue by abstracting values using
symbolic values, i.e. values that depend on symbolic variables. Through-
out execution, a symbolic interpreter uses an SMT solver1 to prune 1 De Moura et al., “Z3: an efficient

SMT solver”, 2008 [DB08]; and
Barbosa et al., “cvc5: A Versatile
and Industrial-Strength SMT Solver”,
2022 [Bar+22]

out infeasible paths. To illustrate, let us consider a simple example.

if (*x < 0) {
*x = -(*x);

}
assert(*x >= 0);

Figure 6.1: Absolute value computa-
tion in a C-like language

*x < 0

*x = - (*x)

assert(*x >= 0)

✓ y < 0 ∧ ¬(−y ≥ 0) UNSAT

x ↦→ −y
(y < 0)

x ↦→ y
y < 0

assert(*x >= 0)

✓ ¬(y < 0) ∧ ¬(y ≥ 0) UNSAT

x ↦→ y
¬(y < 0)

x ↦→ y
true

Figure 6.2: A simple symbolic
execution tree

Example 6.1. Take the piece of C code provided in Figure 6.1, which
computes the absolute value of an integer2. Our initial state, at the top

2 Using machine integers, this imple-
mentation is, in fact, unsound since
the absolute value of the minimum
negative value of a machine integer
is not representable using the same
type [Ope20]. This example assumes
the use of unbounded integers.

of Figure 6.2, has address x pointing to a symbolic value y (symbolicness
are denoted with an overline). The execution also carries an expression
called path condition, which constrains the value of symbolic variables.
It is initially true, indicating that the symbolic value y is unconstrained
and can be any integer.

The symbolic engine starts by executing the if-statement, deciding
whether *x < 0 evaluates to true. Because the symbolic value y is
unconstrained, it is both feasible that y < 0 and ¬(y < 0). The
symbolic engine queries an SMT solver, which answers that both cases
are satisfiable, which causes the execution to branch. Each new branch
carries its associated condition, adequately constraining y.

When the assert is executed, the engine asks the SMT solver whether
any interpretation of variable y exists such that the assertion does not
evaluate to true. Here, the SMT solver answers UNSAT, meaning that
the assertion holds for all interpretations of y that satisfy the path
condition, guaranteeing the absence of any input that would make the
assertion fail. Because the assertion cannot fail, the correctness of the
program is verified.

Functional formalism This chapter introduces a somewhat abstract
formalisation of symbolic execution involving a symbolic execution
monad. The advantages of this approach are twofold. First, it presents
a single notion of symbolic process that we can use to formalise symbolic
semantics, actions, consumers, and producers. Second, it allows for
the definition of syntactic sugar that seamlessly replaces the concrete
execution monad with the symbolic execution monad. For instance, the
side-by-side snippets provided below show the concrete and symbolic
versions of pure expression evaluation related to the specific case of
the division operator. Our formalism provides soundness preservation
results that guarantee that the symbolic version is sound with respect

52 gillian

to the concrete one when using such a transformation.

let JepKθ =
match ep with
| ep ⊕ e′p →
let* v = JepKθ in
let* v′ = Je′pKθ in

v ⊕ v′

| ...

let v ⊕ v′ =
match ⊕ with
| / →
if v′ = 0 then
error DivByZero

else
ok v / v′

| ...

let JepKθ =
match ep with
| ep ⊕ e′p →
let* v = JepKθ in
let* v′ = Je′pKθ in

v ⊕ v′

| ...

let v ⊕ v′ =
match ⊕ with
| / →
if%sat v′ = 0 then
error DivByZero

else
ok v / v′

| ...

In the above, the let* operator in the left-hand snippet corresponds
to the concrete execution monad presented in §4.4, while the right-hand
snippet uses the symbolic execution monad presented in this chapter.
The if%sat construct is syntactic sugar for the symbolic conditional
branching operator, also introduced in this chapter and proven to be
sound with respect to the concrete if construct. Here, for instance,
both the error and the success branches may be explored if its both
satisfiable that v′ = 0 and that v′ ̸= 0.

Overview The first four sections of this chapter present the essential
components of symbolic execution: symbolic things (variables, values,
. . .) in §6.1, path conditions in §6.2, symbolic abstractions in §6.3, and
approximate solvers in §6.4. Next, §6.5 introduces composable symbolic
execution processes. Then, §6.6 presents notes on implementing and
optimising symbolic processes and alternative implementations that are
more efficient and can seamlessly replace the formal definition. Finally,
in §6.7, we apply all this formalism to the parametric symbolic semantics
of SIGIL before presenting the symbolic versions of our example state
models in §6.8.

6.1 The symbolic realm

Symbolic execution is, at the core, the idea of abstracting values using
symbolic variables. For instance, in example 6.1, the initial input
at address x is abstracted to a variable y. The core idea behind
the formalisation of symbolic execution is that each variable can be
interpreted to concrete values. Bugs are detected when an interpretation
of the symbolic variables exists for which the concrete execution would
lead to an error. Symbolic variables are formalised to an identifier for
an unresolved sorted value, where a sort τ ∈ T = P(Val) \ {∅} is a
non-empty subset of the values.

Definition 6.1 (Symbolic Variable).
A symbolic variable x, y ∈ X is an identifier associated with a sort
τ ∈ T. We write x : τ if x is of the sort τ .

Definition 6.2 (Symbolic Interpretations).
A symbolic interpretation ε ∈ I = X fin−−⇀ Val is a finite partial function

symbolic execution 53

that maps symbolic variables to a value of the appropriate sort. In
other words, it must satisfy

x : τ ∧ x ∈ dom(ε) =⇒ ε(x) ∈ τ (Interpretation validity)

Definition 6.3 (Interpretation extension).
Given two interpretations ε1, ε2 ∈ I, we say ε2 is an extension of ε2,
denoted ε2 ≥ ε1, if

ε1(x) = v =⇒ ε2(x) = v

Extension is a partial order on I.

In example 6.1, when the value y at address x is negative, it is
updated to its negation −y. This new value is not simply a symbolic
variable, but a symbolic expression, or symbolic value −y. Given an
interpretation ε such that ε(y) = y, then the symbolic value −y can
immediately be interpreted to −y. As such, a symbolic value is an
object which can be projected to a value given an interpretation of the
symbolic variables it contains.

Here, we take a somewhat abstract and categorical approach to
formalising these objects. We define the symbolic world as the image
of the concrete world through the Sym functor. Given a set of objects
A ∋ a, this functor provides a set of symbolic objects Sym(A) = A ∋ a.
This construction yields our desired definition of a symbolic object
a, projected to a concrete object a when given an interpretation of
all symbolic variables. The set of symbolic values is then straight-
forwardly defined as the image of the set of values through Sym,
Val = Sym(Val). For a given set I, the covariant

hom-functor Hom(I,−) : Set→ Set

is defined as follows:
For two sets A, B and a function
f : A→ B:

Hom(I, A) = I → A

Hom(I, f) :

{︃
Hom(I, A)→ Hom(I, B)

g ↦→ f ◦ g

The partial-hom functor extends
this definition to partial function.
Formally, it can be constructed by
composing the Option functor and
the covariant hom-functor for I.

Definition 6.4 (Sym functor).
We define the symbolic functor Sym = PHom(I,−) as the covariant
partial-hom-functor which maps each set X to the set of partial
functions I ⇀ X.

The functor structure provides the ability to project any set into
the symbolic realm, and it has other valuable properties.

First, all concrete values can also be considered symbolic. For
example, the functor naturally associates the value true with the
constant symbolic value true = λε. true, a total function which does
not depend on the interpretation. It can also lift any symbolic variable
of sort τ to a symbolic value in τ : x = λε. ε(x). Note that we
overload the notation x to mean both the symbolic variable and the
corresponding symbolic value; and that the symbolic value is a partial
function since the interpretation of x may not be defined.

Furthermore, the Sym functor can lift any operation in the concrete
world to its symbolic counterpart for free. For example, it lifts the con-
junction and negation operators on booleans to operators on symbolic
booleans3: 3 In these definitions, if any operand

is undefined, the result is also un-
defined. For instance, in empty
interpretation, i.e. the interpretation
where no symbolic variable is bound,
the interpretation of x ∧ false is
undefined.

∧ :

{︄
B→ B→ B
b1, b2 ↦→ (λε. b1(ε) ∧ b2(ε))

¬ :

{︄
B→ B
b ↦→ (λε. ¬b(ε))

Notation. When unambiguous, we omit the functorial notation and,
for example, talk about the symbolic value x+ 4.

54 gillian

Partial operator Partial operators become particularly awkward, and
cannot be straightforwardly lifted using the Sym functor. Consider, for
example, the interpretation of the symbolic value 1/x when ε(x) = 0.
Deciding that the result is undefined would have subtle implications on
the soundness of the symbolic execution, mainly because of the SMT
solver’s behaviour when encountering such a value.

In the SMT-LIB standard4, all functions must be total, and partial 4 Barrett et al., The Satisfiability
Modulo Theories Library (SMT-LIB),
2016 [BFT16]

functions are extended to total functions by asserting that undefined
cases are under-specified and may be assigned any value of the right sort.
For instance, SMT solvers consider the assertion a/0 = b satisfiable
for any value a and b. Therefore, we cannot simply say that 1/x is
undefined for any interpretation, but rather we should account for the
fact that it could evaluate to any value.

We do not provide a further formalisation of this behaviour but
demonstrate that it is compatible with our formalisation. For instance,
the behaviour of division by zero could be formally specified using a
special symbolic variable 0DIV : Z, and by defining symbolic division
as:

/ :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Z→ Z→ Z

n1, n2 ↦→ λε.

⎧⎪⎪⎨⎪⎪⎩
ε(0DIV) if n2(ε) = 0

n1/n2 if n1(ε) = n1 ∧ n2(ε) = n2 ̸= 0

undefined if ε /∈ dom(n1) ∨ ε /∈ dom(n2)

Notation. Given our above handling of partial operators, the only case
where the interpretation of a symbolic value for v(ε) is undefined is
when v makes use of symbolic variables are not defined in ε. We say
that ε is sufficient for v if v(ε) is defined.

6.2 Path conditions

Remember from example 6.1 that a path condition is a logical formula
used for constraining the values of symbolic variables and is typically
obtained by accumulating the conditions that guard branching ex-
pressions. For instance, the path condition y < 0 restricts the set of
interpretations to those for which the interpretation of y is less than 0.
In other words, the interpretation of the symbolic value y < 0 must be
true. Hence, a path condition is simply a symbolic boolean.

Definition 6.5 (Path conditions).
A path condition π ∈ Π = B is a symbolic Boolean.

Since symbolic booleans are defined as B = I ⇀ B, this further
confirms the intuition that each path condition corresponds to a set
of symbolic interpretations (i.e. the set of interpretations such that
π(ε) = true).

Furthermore, given two symbolic booleans π1 and π2 respectively
corresponding to the sets of interpretations I1 and I2, the conjunction
π1 ∧ π2 corresponds to the set of interpretations I1 ∩ I2. Therefore,
accumulating the path condition using the conjunction monotonically
restricts the set of corresponding interpretations.

symbolic execution 55

During symbolic execution, an SMT solver determines the satisfia-
bility of the path condition of a branch.

Definition 6.6 (Path condition satisfiability).
A path condition is said to be satisfiable if an interpretation exists in
which it is true.

SAT(π) ⇐⇒ ∃ε. π(ε) = true

In addition, to check assert statements, it is necessary to understand
if an expression must hold under the current path condition. This
operation is called an entailment check and relies on the notion of
validity.

Definition 6.7 (Path condition validity).
A path condition is said to be valid if true in all sufficient interpretations.

VALID(π) ⇐⇒ ∀ε. π(ε) is undefined ∨ π(ε) = true

Validity checks can be formulated as satisfiability checks as VALID(π) ⇐⇒
UNSAT(¬π).

Definition 6.8 (Path condition entailment).
We say that a path condition π1 entails another path condition π2,
denoted π1 |= π2 if the latter is true in all interpretations in which the
former is true. Formally,

π1 |= π2 ⇐⇒ ∀ε. π1(ε) = true =⇒ π2(ε) = true

⇐⇒ VALID(π1 =⇒ π2)

⇐⇒ UNSAT(π1 ∧ ¬π2)

Note that the above shows how entailment checks can be decided
using an SMT solver.

6.3 Symbolic abstractions

Later in this presentation, we define symbolic state models, used as
a parameter for the symbolic SIGIL semantics. To define soundness,
we need symbolic states to abstract over the set of concrete states Σ.
The naive approach would require symbolic states to be elements of
Sym(Σ). Unfortunately, this would be too restrictive.

Example 6.2. To illustrate, take the linear heap model σ ∈ Σ = N fin−−⇀
Val . A common way to define symbolic heaps5 is by abstracting each 5 We provide more details about this

choice in §6.8.2component of the map to their symbolic counterparts, σ ∈ Σ = N fin−−⇀
Val , and each binding of the map is interpreted independently. For
instance, using the following interpretation ε, the symbolic heap σ

would be interpreted to the concrete heap σ:

ε = [x ↦→ 0, y ↦→ 42, . . .]

σ = [x ↦→ y, y ↦→ x]

σ = [ε(x) ↦→ ε(y), ε(y) ↦→ ε(x)]

= [0 ↦→ 42, 42 ↦→ 0]

However, using the interpretation ε′ = [x ↦→ 0, y ↦→ 0, . . .], the obtained
concrete heap contains the same binding twice and is therefore ill-
defined. Instead, we would like to say that σ yields no model under ε′,
while it yields a single model under ε.

56 gillian

Furthermore, it is possible to define symbolic states with several
models under a single interpretation.

For these reasons, we define symbolic abstractions, which are symbolic
objects that yield a set of concrete objects given an interpretation. The
interpretation of a symbolic heap becomes either a singleton when
there are no conflicts in the bindings or the empty set when it would
otherwise be ill-defined.

Definition 6.9 (Symbolic abstraction).
Given a set A, its set of symbolic abstractions Abs(A) = I ⇀ P(A)6. 6 The abstraction functor is obtained

by composing the covariant power set
functor with the symbolic functorNotation. When ambiguous, we write symbolic abstractions using both

an overline and an asterisk: a∗ ∈ A∗ = Abs(A). However, when unam-
biguous, we only use the overline and, for example, denote symbolic
states as σ ∈ Σ. Furthermore, we write ε, a |= a∗ when a ∈ a∗(ε)

We often consider more “concrete” structures than elements of
Abs(A). For instance, the structure of the symbolic linear heap defined
above is not strictly an element of Abs(A), but a partial finite map
from N to Val . However, by defining a modelling relation ε, σ |= σ, we
can view the symbolic linear heap a symbolic abstraction, where σ(ε)
is the set of models σ.

6.4 Approximate solvers

We explained above that SMT solvers are used to decide the satisfiability
of a path condition throughout execution. However, SMT solving is
generally undecidable, and even when a query is decidable, it may
exhaust the time or memory allocated. As such, solvers are imperfect
and, according to the SMT-LIB specification, may return SAT, UNSAT,
or UNKNOWN, indicating that a conclusion could not be reached. The
latter is awkward to handle in meta-theory, and other formalisations of
symbolic execution usually7 assume an ideal solver that never returns 7 Featherweight VeriFast [JVP15]

does not make this assumption.
They define a notion of “sound
solver” similar to our notion of OX-
approximate solver. We extend the
definition to also capture under-
approximation.

UNKNOWN.

While we account for solver imperfec-
tion, our meta-theory cannot account
for solver unsoundness. Accounting
for the latter is impossible without
potentially rejecting the entirety of
our results. Hence, we must assume
that SMT solvers are sound.

Another imperfection may arise from the encoding of path conditions
into SMT queries. It is common practice for verification tools to under-
constrain operations when crafting queries. For example, Viper users
may define custom theories and usually declare only the subset of axioms
sufficient for verification to succeed. Similarly, Gillian’s encoding of
sequences was under-specified until recently. When queries are under-
constrained, the solver may answer SAT when the right answer is, in fact,
UNSAT. Effectively, such an encoding leads to the over-approximation
of the set of symbolic interpretations corresponding to a path condition.
Therefore, while under-constrained encoding should be allowed in OX

mode, it should be forbidden in UX mode. Conversely, solvers used
during UX analysis should allow over-constraining queries.

Example 6.3 (Under-constrained SMT encoding). In Viper, users have
the option to define their own domains, which are effectively custom
theories that extend the SMT solver encoding. For instance, a user
may define a domain for a custom encoding of lists, but only declare
the axioms necessary for the verification tesk at hand.

symbolic execution 57

domain list {
function Nil(): list
function Cons(head: T, tail: list): list
function length(l: list): Int
axiom { length(Nil()) == 0 }
axiom { forall l: list :: { length(l) >= 0 } }

}

Figure 6.3: A custom under-
constrained (over-approximating)
domain for lists in Viper

The code in Figure 6.3 encodes lists in Viper through its two con-
structors, Nil and Cons. It also axiomatises a length function, but only
declares two axioms: the length of the empty list is 0, and the length
of any list is non-negative. Any verification task performed using this
domain as a model of mathematical lists would be sound, and would
guarantee the absence of false negatives. However, the encoding is
under-constrained as, for instance, length could be defined as a constant
function that always return 0, and would still satisfy the axioms.

Using this encoding yields a list solver that is strictly OX, as per
our definition of approximate solvers.

Definition 6.10 (Approximate solver).
An approximate solver with mode m ∈ {OX, UX} is a function

SATm : Π→ B

with the following property, depending on the mode:

SAT(π) =⇒ SATOX(π) (OX SAT Validity)

SATUX(π) =⇒ SAT(π) (UX SAT Validity)

An OX-approximate solver must declare at least all truly satisfiable
path conditions as satisfiable. It must never declare unsatisfiable a
path condition that has models. However, no constraint prevents such
a solver from declaring an unsatisfiable path as satisfiable. Therefore,
while an OX-approximate solver may erroneously deem infeasible bugs
feasible, leading to false positives, it ensures no true bug is overlooked.

Conversely, for a UX-approximate solver to declare a path condition
satisfiable, it must be genuinely satisfiable. In other words, it must
never mistakenly label an infeasible path condition as feasible. Hence,
while a UX-approximate solver may miss true bugs, it will never raise
false positives.

Three theoretical constructs serve as reference points: the trivial
SATOX solver always returns SAT, thus significantly over-approximating;
the trivial SATUX solver always yields UNSAT; and the ideal solver
SATEX invariably provides the exact answer8, but is not computable. 8 SATEX(π) ⇐⇒ SAT(π)

Throughout this presentation, the reader is encouraged to use these
solvers as conceptual benchmarks to understand the implications of
using approximate solvers.

In practice, a solver such as Z3 or CVC5 can be used, and the inter-
pretation of the UNKNOWN answer is modified to obtain an approximate
solver. In OX mode, it becomes SAT, and in UX mode, it becomes
UNSAT:

58 gillian

let solver m query =
match Z3.solve query with
| SAT → SAT
| UNSAT → UNSAT
| UNKNOWN → match m with

| OX → SAT
| UX → UNSAT

Existing tools take various approaches when receiving an UNKNOWN

answer from the solver. CBMC issues a warning, attesting it cannot
determine the absence of a bug. Such a warning is informative but
does not provide more theoretical guarantees than an error. JaVerT 2.0
would simply crash, throwing an exception and terminating execution.
While not elegant, this approach is still sound and ensures the absence
of false negatives. In contrast, VeriFast does not differentiate between
UNKNOWN and SAT, adopting precisely the behaviour we prescribe for
OX-approximate solvers.

6.5 Symbolic execution processes
σ

⟨σ0 | π0⟩ ⟨σ1 | π1⟩ . . . ⟨σn | πn⟩

Figure 6.4: A symbolic process

Equipped with all the necessary basic definitions, we are ready to define
symbolic execution processes. Essentially, a symbolic execution process
is a function that receives a symbolic abstraction and produces a set of
pairs called branches, composed of an abstraction and a path condition.
They are typically visualised using tree diagrams, as in Figures 6.2
and 6.4.

Symbolic semantics, actions, consumers and producers can all be
formalised as symbolic processes. Additionally, simple processes can
be composed together to form more complex processes, and the com-
position operator has soundness preservation properties, allowing for
modular soundness proofs.

6.5.1 Branches

First, we define the notion of symbolic branch. This definition formalises
the use of path conditions to constrain the interpretation of symbolic
abstractions.

Definition 6.11 (Symbolic branch).
A symbolic branch is a pair composed of a symbolic abstraction and a
path condition and is denoted ⟨a∗ | π⟩ ∈ ⟨A∗ | Π⟩. Symbolic branches
themselves are symbolic abstractions over A, where

ε, a |= ⟨a∗ | π⟩ ⇐⇒ ε, a |= a∗ ∧ π(ε) = true

6.5.2 Symbolic processes

Symbolic processes are functions that return a set of branches given
a symbolic abstraction as input. We use them to formalise symbolic
semantics, actions, producers and consumers.

Definition 6.12 (Symbolic processes).
A symbolic process from A

∗
to B

∗
is a function of A

∗ → P(⟨B∗ | Π⟩).

For instance, given a fixed program γ, specification context Γ, and
expression e, the symbolic semantics is a symbolic process that receives

symbolic execution 59

a symbolic substitution θ ∈ Var → Val that maps variables to symbolic
values and the current symbolic state σ. It returns a set of branches
containing a triple (o, v, σ′) ∈ O × Val × Σ and associated path condi-
tions. Each input pair and resulting triple is a symbolic abstraction,
defined as9: 9 In fact, this definition can be

algebraically constructed:
• concrete sets, such as the set of

outcomes, can be used as their
own trivial symbolic abstraction;

• symbolic values and symbolic
substitutions are symbolic abstrac-
tions that are always interpreted
to a singleton; and

• the product of abstraction forms
an abstraction which is inter-
preted point-wise.

Each of these constructions is ob-
tained for free through the definition
of the Abs functor.

ε, (θ, σ) |= (θ, σ) ⇐⇒ θ(ε) = θ ∧ ε, σ |= σ

ε, (o, v, σ) |= (o′, v, σ) ⇐⇒ o = o′ ∧ v(ε) = v ∧ ε, σ |= σ

where the interpretation of a symbolic substitution is obtained by
interpreting each binding individually

θ = [x ↦→ v1, y ↦→ v2, . . .] =⇒ θ(ε) = [x ↦→ v1(ε), y ↦→ v2(ε), . . .]

Note that symbolic processes are not computable if they return an
infinite number of branches. For instance, Gillian’s whole-program sym-
bolic testing could loop infinitely in the presence of recursive functions.
The number of branches is artificially capped to prevent this, yielding
a bounded symbolic execution. In contrast, using specifications for re-
cursive function calls avoids this problem entirely during compositional
verification.

Soundness Recall that symbolic execution aims to solve the problem
of non-determinism in the concrete semantics yielding an infinite (or
large) number of outcomes, rendering the exhaustive search for bugs
impossible.

We establish the definition of soundness between symbolic processes
and non-deterministic processes, depending on the approximation mode.
f is said to be OX-sound with respect to f if all executions of f have

a corresponding symbolic path in f . More formally, if f(a) ⇝ b and
a is a model of a∗ under the interpretation ε, then there must exist a
symbolic branch ⟨b∗ | π⟩ produced by f(a∗) that has b as a model under
an extended interpretation ε′ ≥ ε. This property guarantees that all
executions of f are covered by at least one execution of f , ensuring that
all concrete erroneous executions will be detected using the symbolic
process. Extending the interpretation is necessary to account for the
fact that the symbolic process may introduce new symbolic variables10. 10 Jacobs et al., “Featherweight

VeriFast”, 2015 [JVP15]Conversely, f is UX-sound with respect to f if every symbolic path
corresponds to at least one concrete execution. If f(a∗)⇝ ⟨b∗ | π⟩, then
the path condition π must be feasible under at least one interpretation
ε. For any such ε, b

∗
must have at least one model b, and for any such

model, there must exist a model of a∗ such that f(a)⇝ b. Note that
this implies that it is sufficient to check the satisfiability of the path
condition resulting from a UX-sound symbolic process to determine
if there is a corresponding concrete execution. This property ensures
that all satisfiable erroneous executions produced by f are true bugs
reachable by f .

Definition 6.13 (Symbolic soundness).
Let A

∗
and B

∗
be sets of symbolic abstractions over A and B. Let

f : A → P(B) be a non-deterministic process from A to B and
f : A

∗ → P(⟨B∗ | Π⟩) be a symbolic execution process from A
∗

to B
∗
.

60 gillian

f is OX-sound (resp. UX-sound) with respect to f if:

f(a)⇝ b ∧ ε, a |= a∗ =⇒
∃b∗, π, ε′ ≥ ε. f(a∗)⇝ ⟨b∗ | π⟩ ∧ ε′, b |= ⟨b∗ | π⟩

(OX symbolic soundness)

f(a∗)⇝ ⟨b∗ | π⟩ =⇒
(SAT(π) ∧ ∀ε. π(ε) = true⇒ ∃b. ε, b |= b

∗ ∧
(∀b. ε, b |= b

∗ ⇒ (∃a ε, a |= a∗ ∧ f(a)⇝ b)))

(UX symbolic soundness)

Notation. We write f s∼
m
f if f is an m-sound symbolic process with

respect to the non-deterministic process f , where m ∈ {OX, UX, EX}

6.5.3 Composition and monad structure

We have now defined symbolic processes and what it means for a
symbolic process to be sound. However, implementing large processes
(such as symbolic semantics) and proving their soundness can quickly
become cumbersome. To reduce the required effort, we define soundness-
preserving composition operators that allow for the construction of
large symbolic processes from smaller ones.

To define the composition, we give a monad structure to symbolic
branches11. To keep the discussion straightforward and focused, we 11 Such that symbolic processes

become Kleisli arrows in that monad.omit a detailed exposition of the category theory involved, including
the formal assertion that this composition adheres to the monad laws.
However, these details are fully presented and proven in Appendix C.1.

Bind Recall that composition for a monad is defined using a bind
operator. In the case of symbolic processes, the bind operator describes
how to apply a new symbolic process to the result of a previous one.
Since the result of a symbolic process is a set of branches, the bind
operator applies the new process to each branch and monotonically
accumulates the path conditions using the conjunction operator. Ad-
ditionally, the bind operator ensures that the resulting branches have
a satisfiable path condition. This definition is, therefore, implicitly
parametric on an approximate solver SATm.

Definition 6.14 (Bind on the symex monad).
Let f : A

∗ → P(⟨B∗ | Π⟩) and r ∈ P(⟨A∗ | Π⟩). The bind operator for
the symbolic execution monad is defined as follows:

type ’a symex = (’a × Π) set

let bind (r: ’a symex) (f: ’a → ’b symex) : ’b symex ={︂
⟨b∗ | π ∧ π′⟩ | ⟨a∗ | π⟩ ∈ r ∧ ⟨b∗ | π′⟩ ∈ f(a∗) ∧ SATm(π ∧ π′)

}︂
a∗

⟨b∗0 | π0⟩ ⟨b∗n | πn⟩

⟨c∗0 | π0 ∧ π′
0⟩

SAT

. . . ⟨c∗m | π0 ∧ π′
m⟩

UNSAT

. . .

Figure 6.5: Two symbolic processes
composed.

Figure 6.5 illustrates the composition of two symbolic processes. The
first process receives a symbolic abstraction a∗ and yields n branches
⟨b∗0 | π0⟩ to ⟨b∗n | πn⟩. A second process is then applied using the bind
operator on the set of branches. When applied to the abstraction b

∗
0

of the first resulting branch, the second symbolic process yields of m
new branches ⟨c∗0 | π′0⟩ to ⟨c∗m | π′m⟩. The bind operator monotonically
accumulates the path conditions using the conjunction operator, and

symbolic execution 61

the branches resulting from the composition are therefore further con-
strained using the path condition π0 – which had been obtained from
the first process. After adding this constraint, the branches with a
path condition declared unsatisfiable by the solver are filtered out.

Soundness preservation We can now state that the composition of
two sound symbolic processes yields a sound symbolic process. To do
so elegantly, we first provide the definition of Kleisli composition.

Definition 6.15 (Kleisli composition).
Given the bind operator of a monad, and two processes f and g, the
Kleisli composition of f and g, denoted using the fish operator f >=> g,
is defined as:
let f >=> g = fun a → bind (f a) g

This definition allows us to compose two symbolic processes f and
g using the above bind operator. It also lets us define the composition
of concrete non-deterministic processes using the bind operator that
handles non-determinism.12 12 In the powerset monad, the bind

operator is defined as:

let bind s f =
⋃︂
x∈s

(f x)
Theorem 6.16 (Process composition: soundness preservation).

f
s∼
m
f ∧ g s∼

m
g =⇒ f >=> g

s∼
m
f >=> g

This theorem shows that the composition of any two sound symbolic
processes is sound. Together with the fact that the induced monad
satisfies the monad laws, it ensures that chaining any number of such
processes yields a sound symbolic process.

Symbolic branching We have defined the bind operator as a means to
compose two symbolic processes sequentially. Another equally pivotal
composition of symbolic processes is through conditional branching.
Conceptually, conditional branching for symbolic processes mirrors the
behaviour of the if/else construct. Given two symbolic processes f
and g, if a guard π is satisfiable, then the first is applied, and in the
case where its negation ¬π is satisfiable, the second is applied. If both
π and its negation are satisfiable, then both branches are explored.

a∗

⟨b∗f | πf ∧ π⟩

f

⟨b∗g | πg ∧ ¬π⟩

g

SAT UNSAT

Figure 6.6: A simple symbolic
process obtained using the symbolic
branching operator.

Figure 6.6 illustrates a simple case of conditional branching. Given
input abstraction a∗, f produces a single branch ⟨b∗f | πf ⟩, and g

produces a single branch ⟨b∗g | πg⟩. Since the branches are executed
conditionally, the guard π is added to the path condition of the first
branch, and its negation is added to the path condition of the second
branch. Moreover, in this example, the obtained path condition πg∧¬π
is unsatisfiable, and therefore the second branch is dropped.

Formally, branching is not defined using two symbolic processes f
and g but their resulting sets of branches rf , rg ∈ P(⟨B

∗ | Π⟩). The
functional definition uses an auxiliary assume function, which returns
a single branch containing the unit value () and a given path condition.
Since branches are checked for satisfiability using the bind operator,
this definition implicitly depends on an approximate checker SATm.

Definition 6.17 (The branch function).
The branch function is defined as follows using functional notations

62 gillian

let assume π = if SATm π then { ⟨() | π⟩ } else vanish

let branch π rf rg =
(bind (assume π) (fun () → rf))

∪ (bind (assume ¬π) (fun () → rg))

It was mentioned earlier that conditional branching mirrors the
behaviour of if/else. In fact, we show that processes resulting from
conditional branching are sound with respect to non-deterministic
processes constructed from concrete branching.

The input of h∗ is a product abstrac-
tion defined as

ε, (b, a) |= (π, a∗)
⇐⇒ π(ε) = b ∧ ε, a |= a∗

Theorem 6.18 (Conditional branching: soundness preservation).
Let f, g : A → P(C) and be non-deterministic processes and h be
defined as:
let h (b, a) = if b then f a else g a

Furthermore, let A
∗

and C
∗

be sets of symbolic abstractions for A
and C. Let f, g : A

∗ → P(⟨C∗ | Π⟩) be m-sound symbolic processes
with respect to f and g. Finally, let h be the symbolic process defined
as:
let h (π, a∗) = branch π (f a∗) (g a∗)

Then, if the branch operator makes use of an m-approximate solver,
then h

∗
is an m-sound symbolic process with respect to h.

Error handling and syntactic sugar Our goal is to be able to provide
an elegant definition of the parametric symbolic semantics for SIGIL
in the next section. So far, we have designed the basic abstractions
that allows us to do so. However, the notations can still largely be
improved.

First, note that the bind operator defined above for symbolic pro-
cesses abstracts over non-deterministic processes, but does not yet
support error handling as required for defining semantics elegantly.
Thankfully, the bind operator can be straightforwardly13 modified to

13 To avoid cluttering this presenta-
tion, we do not explicitly write its
definition. For the familiar reader,
it is obtained from applying the
Outcome monad transformer to the
symbolic execution monad.

handle outcomes, such that execution continues in case of success and
terminates in case of error, similarly to the concrete execution monad.
This modification does not compromise soundness.14

14 The formal justification consists
in considering the content of the
resulting symbolic branches as pairs
(o, b

∗
), where concrete outcomes o

acts as their own abstractions, and
pairs are interpreted pointwise.We can then assign the updated definition of the bind operator to a

let* operator, allowing us to seamlessly compose symbolic processes as
we did concrete processes in §4.4.

Similarly, we can override the OCaml if/else syntax to imply a call
to the branch function. In the rest of this presentation, we define the
if%sat15 operator such that:

15 This syntax is, in fact, valid
in OCaml, and defined using a
pre-processor extension (or PPX).
Gillian’s implementation comes with
this extension.

if%sat π then rf else rg is desugared to branch π rf rg

These new syntactic sugars are particularly powerful when compar-
ing a concrete semantics and a symbolic semantics side-by-side. To
illustrate, here are the concrete and symbolic semantics of the if/else

expression of SIGIL side by side. The concrete semantics is copied16 16 To reduce clutter, we omit pa-
rameters irrelevant to this specific
case

from the definition provided in §4.4.

symbolic execution 63

let rec eval θ σ e =
match e with
| if eg then et else ee →
let* (b, σ′) = eval θ σ eg in
let* () = assert_type b B in
if b then
eval θ σ′ et

else
eval θ σ′ ee

let rec eval θ σ e =
match e with
| if eg then et else ee →
let* (π, σ′) = eval θ σ eg in

let* () = assert_type π B in
if%sat π then

eval θ σ′ et
else
eval σ′ ee

Just looking at the above and using Theorems 6.16 and 6.18, it can
be trusted that the symbolic semantics is sound with respect to the
concrete one.

More pragmatically, this syntax allows users of the Gillian framework
to write symbolic actions, as well as producers and consumers, almost
as if they were writing concrete ones. The burden of symbolic execution
and error handling is delegated to the monad and hidden behind a
familiar syntax.

6.6 Interlude: implementation and optimisation

The abstract framework introduced here is designed to simplify proofs
of soundness for the various symbolic processes that must be defined.
The symbolic execution monad has been implemented in Gillian17, 17 For legacy reasons, not all sym-

bolic processes in the Gillian im-
plementation are defined using the
monad. It is mainly used in the
Gillian-C and Gillian-Rust state
models.

demonstrating its practical utility. In this section, we offer insights
into its implementation and optimisation. Any optimization applied
to the symbolic execution monad is invaluable, given its role in every
symbolic operation.

Branch exploration Symbolic processes are defined to return sets of
branches. In a real implementation, using sets of branches (encoded
using binary trees or hashsets) would require superfluous duplicabil-
ity checks, and yield unpredictable execution orders. In particular,
execution order is important in the case where execution does not
terminate.

In practice, a symbolic execution processes would yield lists of
branches, or sequences18. Below, we provide an implementation of the 18 Sequence here is defined in the

sense of OCaml’s Seq module and
which, according to the OCaml
documentation “can be thought of as
a delayed list, that is, a list whose
elements are computed only when
they are demanded by a consumer.”

bind operator that depends on a module M, which should be substituted
with List or Seq19.

19 concat_map is an alternative name
for the bind operator commonly used
for monads that behave as collections
such as List and Seq. Using any
other collection monad M would also
work, but render branch exploration
less straightforward.

let bind x f =
M.concat_map (fun (v, π) →
M.concat_map (fun (v′, π′) →
if SATm(π ∧ π′) then M.singleton (v′, π ∧ π′)
else M.empty

) (f v)
) x

Using lists, the above implementation explores the symbolic execu-
tion tree breadth-first, while the exploration is performed depth-first
using sequences.

Breadth-first search is interesting when the depth of the symbolic
process tree is infinite, for example, if the process is non-terminating.
Using this approach, all nodes are eventually explored, while a depth-
first search could lead execution to get stuck in a single infinite branch.
Therefore, using breadth-first search and an OX engine, all bugs would

64 gillian

eventually be discovered. This observation has recently been formalised
in the context of a mechanised symbolic execution engine20. 20 Correnson et al., “Engineering a

Formally Verified Automated Bug
Finder”, 2023 [CS23]

In the context of compositional symbolic execution, however, function
specifications usually ensure the absence of non-terminating symbolic
processes. Therefore, the choice of branch exploration is less critical.
In fact, a depth-first search may reduce the memory pressure and
can be used to leverage incremental solvers, as described in a further
paragraph.

Fail-fast execution It is common to terminate execution as soon as
an error prevents successful verification during OX analysis so as to
provide immediate feedback to the user. Gillian, VeriFast, and Viper
all adopt this fail-fast execution strategy.

Our meta-theoretical framework does not allow for the specification of
such behaviour, as it is cumbersome to model and of limited theoretical
interest. However, in the rest of this presentation, we sometimes write
f(a∗)⇝ Abort to imply that immediate failure is the desired behaviour.
By defining Abort21 to be the symbolic abstraction that invariably 21 Of course, this corresponds to the

maximum of the abstraction lattice
from an abstract interpretation point
of view.

captures all concrete elements22, theoretical soundness is maintained.

22 i.e. for Abort = λ_. A, such that

∀a, ε. ε, a |= Abort
Access to the current path condition Symbolic processes receive an
abstraction as input and must return the set of all possible branches
starting from that input. The concatenation of path conditions is then
handled when composing the processes. However, previous formalisa-
tions of Gillian would present the symbolic semantics as a function
receiving both the current state and path condition and returning a
set of branches with updated state and path condition. Then, part of
proving soundness for under-approximating execution would consist of
showing that path conditions may only strengthen.

While our approach immediately guarantees the monotonicity of
the path condition, thereby alleviating the burden of proof, it also
prevents the symbolic execution engine from inspecting the current
path condition.

In practice, accessing the current path condition may help with vari-
ous optimisations, such as the ability to reduce expressions contextually.
For instance, if the path condition entails that a variable x may only
take value v, the variable can be swapped with its value in the current
state. Using the concrete value helps to avoid redundant or trivial
solver calls.

Furthermore, having access to a current path condition often al-
lows for early cutting of infeasible paths, thereby saving resources.
The inability to access the current path condition can be seen as a
shortcoming of the symbolic execution monad.

Thankfully, this issue is overcome by introducing an alternative
definition of the symbolic execution monad as functions that receive
the current path condition and return a set of branches with updated
path conditions that must be strictly stronger. Below, the current
definition of the monad is provided as a reminder on the left, and the
updated version with the ability to access the solver state is presented

symbolic execution 65

on the right.

Symex(A
∗
) = P(⟨A∗ | Π⟩)

Symex(A
∗
) =

{f ∈ Π→ P(⟨A∗ | Π⟩) s.t.
∀π. ∀⟨a∗ | π′⟩ ∈ f(π). π′ ⇒ π}

The old monad can be seamlessly swapped with this new monad
version without observable differences by defining the appropriate bind

and branch operators. The latter is strictly more expressive and can
implement new symbolic processes such as reduce function that receives
a symbolic value and reduces it using the current path condition.

While we do not explicitly provide the implementations of the basic
operations for this alternative monad definition, they can be found in
the implementation of Gillian.

Optimising the branch function The branch function presented in
the previous section can be optimised by noticing that the following
implication holds:

UNSAT(π)⇒ SAT(¬π)

If the path condition provided as input of the branch function is
unsatisfiable, then the satisfiability check for its negation is guaranteed
to be successful, and the second branch can be explored without any
SAT check required.

Note that this optimisation requires the above-defined alternative
implementation of the symbolic execution monad, which allows for the
current path condition to be accessed.

Interestingly, this makes the definition of symbolic processes biased.
It encourages developers to put cases that are often unfeasible on the
left operand of the branch operator. An example is provided in §6.8.1,
where the symbolic assert action is implemented with this optimisation
in mind.

Incremental solving Modern SMT solvers allow for incremental solv-
ing. Users can add checkpoints using the push operation and backtrack
to the last checkpoint using the pop operation, forgetting any new
knowledge acquired since. This allows23 for faster solving times and

23 Some SMT solvers support incre-
mental solvers more efficiently than
others.

reduced memory usage.
We propose another implementation of the symbolic execution

monad, which leverages incremental solving by using OCaml’s ability to
perform side effects and modify the solver state in place. Symbolic pro-
cesses become iterators over the final states of the process, and the path
condition is updated in the background. Every time a process branches,
a new checkpoint is added to the solver, and when a leaf is reached,
a pop operation is performed to backtrack to the last checkpoint and
explore the next branch. Figure 6.7 illustrates the structure of symbolic
processes using this implementation, and the implementation of the
branch operator is provided below.

σ0

σ1

σ2 σ3

σ4

pu
sh

π 0

pu
sh

π 1
po

p
π 1

push
¬
π
1

pop
¬
π
1

po
p
π 0

push
¬
π
0

Figure 6.7: Incremental symbolic
process, arrows are annotated with
the corresponding operation in the
solver. States are explored in the
order matching their numbering.
The root branching is guarded by
condition π0 and the other one is
guarded by π1

type ’a symex = ’a seq

let branch (π: Π) (t: ’a symex) (e: ’a symex) : ’a symex =
Seq.append
(fun () →

66 gillian

Solver.push ();
Solver.add_constraints π ;
if Solver.sat () then t () else Seq.empty ())

(fun () →
Solver.pop ();
Solver.add_constraint (¬π);
if Solver.sat () then e () else Seq.empty ())

This new approach allows for implementing all primitive operations
of the symbolic execution monad. Therefore, it is a valid alternative to
the simpler monad presented in this formalisation.

Although this implementation is not included in Gillian, we have
explored it within the scope of a prototype and discovered it to be a
promising alternative to the existing methods.

Caching and batching SAT checks Symbolic execution can result in
many small checks that are sometimes repeated. A common technique
to reduce the overhead of these checks is to use caching and batching.
Both these techniques are commonly used in symbolic execution engines
and, therefore, deserve to be mentioned here.

Caching consists of storing the results of previous checks and reusing
them when the same check is requested again. The overhead of caching
is usually low, and it can be very effective when the same queries
are repeated often. More advanced caching techniques specialized to
symbolic execution have been researched in the past24, but are yet to be 24 Trabish et al., “Address-Aware

Query Caching for Symbolic Execu-
tion”, 2021 [TIR21]

experimented with in the context of compositional symbolic execution.
Batching consists of checking satisfiability only when a certain num-

ber of constraints have been added to the path condition or when the
end of a branch has been reached. While this can mean exploring
some unfeasible branches for longer than necessary, it can also reduce
the number of queries sent to the solver. Substantial speedups have
been observed when batching queries during memory accesses in the
Gillian-C memory model.

6.7 Parametric symbolic execution for SIGIL

Previous sections of this chapter focused on defining the mathematical
framework to describe and reason about symbolic execution and its
soundness. This section applies this mathematical framework to the
symbolic parametric semantics of SIGIL.

Remember from §4.4 that the concrete semantics of SIGIL SS is
parametric on a state model S = (A,Σ, eval_action), which is a
triple composed of a set of actions, a set of states and an action
evaluation function. Additionally, one may use a compositional state
model S = (A,Σ, eval_action) as parameter for the SIGIL semantics,
yielding in a compositional semantics SS. If the compositional state
model S is m-concrete-sound with the full state model S (i.e. S c∼ S),
then, in turn, the resulting compositional semantics is sound with
respect to the full semantics, SS

c∼ SS. In §5.4, we have also extended
the compositional semantics with the ability to execute specifications.

Here, we define the symbolic semantics of SIGIL, which is parametric
on a symbolic compositional state model S. This symbolic semantics

symbolic execution 67

is soundness preserving: if the symbolic state model S is m-sound
with respect to a compositional state model S, denoted S s∼ S, then

the resulting symbolic semantics SS is m-sound with respect to the
compositional semantics, SS

s∼ SS.
Note that the soundness property is orthogonal to that of compo-

sitionality. Hence, given a full state model S, it is possible to define
a full symbolic state model S s∼ S and use it as a parameter of the
symbolic semantics. This would yield a sound symbolic full semantics
SS

s∼ SS that can be used for non-compositional symbolic execution.
Nevertheless, to limit the scope of our presentation, we focus exclusively
on symbolic compositional state models.

6.7.1 Symbolic state models

The signature of a symbolic compositional state model S mirrors that
of a concrete compositional state model S. For S to be m-sound with
respect to S for a mode m ∈ {OX, UX}, denoted S s∼

m
S, it must comprise:

• a set of symbolic states Σ ⊆ Abs(S.Σ) which are symbolic abstrac-
tions over the set of concrete state fragments;

• a symbolic empty state 0 which must have only S.0 as model under
any interpretation25; 25 That is, 0 = λ_. {S.0}

• a set of actions, which must be identical to those of S;
• an action evaluation function which is a symbolic process that re-

ceives a symbolic state and a list of symbolic values, returns a set
of well-formed branches, and must be sound with respect to the
concrete action evaluation function;

• a set of core predicates S.∆ = S.∆; and
• a symbolic producer and consumer that must be sound with respect

to the concrete ones.
Below, we provide the complete signature of symbolic state models

as they must be implemented by a tool developer using our framework.

Definition 6.19 (Symbolic state model).
A symbolic state model S has the following signature:

module type Symbolic_state_model = sig

type Σ

val 0 : Σ

type A
val eval_action : A → Σ → Val list → (O ×Val × Σ) symex

type ∆

val produce : ∆ → Σ → Val list → Val list → Σ symex

val consume : ∆ → Σ → Val list → (O+
l ×Val × Σ) symex

end

6.7.2 Parametric symbolic semantics of SIGIL

The parametric symbolic semantics of SIGIL is obtained by lifting
the concrete specification semantics defined in §5.4. The let-binding
operator let* is replaced with that which handles the composition of
symbolic processes and erroneous outcomes, as defined in the previous
section. Additionally, all uses of if/else are replaced with symbolic

68 gillian

conditional branching, using the syntactic sugar if%sat/else. An excerpt
is provided in Figure 6.8.

let rec eval S γ Γ θ σ e : (O ×Val × Σ) symex =
let eval = eval γ Γ in (* These arguments do not change *)
match e with
| let x = e1 in e2 →
let* (v, σ′) = eval θ σ e1 in

eval θ [x← v] σ′ e2
| if eg then et else ee →
let* (π, σ′) = eval θ σ eg in

let* () = assert_type π B in
if%sat π then

eval θ σ′ et
else

eval θ σ′ ee
| α(e⃗) →
let* (v⃗, σ′) = eval_all θ σ e⃗ in

S.eval_action α σ′ v⃗
| ...

Figure 6.8: Excerpt of the parametric
symbolic semantics of SIGIL

Notation. Because the overlines make the above difficult to read, we
sometimes omit them on function names such as eval of eval_action

when it is clear from the context.

Theorem 6.20 (Semantics: soundness preservation).
If the symbolic state model S is m-sound with respect to the concrete
compositional state model S, then the induced symbolic semantics SS,
using an m-approximate solver, is m-sound with respect to the concrete
induced semantics SS:

S s∼
m

S =⇒ SS
s∼
m
SS

6.8 Example symbolic state models

We now continue our presentation of the linear heap and pure state
model introduced in the previous sections. This time, however, we start
by describing the symbolic pure state model, as it captures important
base cases for writing symbolic processes.

6.8.1 Symbolic pure state model

Recall that the set of pure states Σ = unit contains a unique element.
We define symbolic states also to contain a unique element, which is
the abstraction 0 = () = λ_. {0}. Since there is a unique symbolic
state, we can consider that Σ = unit.

Its symbolic actions are noteworthy for their coverage of crucial base
cases and for offering insights into the distinctions between OX and
UX analysis. They also highlight how to apply optimisations discussed
in §6.6. Below, we provide their definitions along with an in-depth
explanation for each.
module Pure : Symbolic_state_model = struct

type Σ = unit (* Type of states *)

(* Actions are the same as in the concrete state model *)

symbolic execution 69

type A = nondet | assume | assert | skip

let nondet σ =
(* Create a fresh symbolic variable, that has not been used so far *)
let x = fresh_svar Val in
ok (x, σ)

let assume σ π =
if%sat π then ok ((), σ)
else vanish

(* Alternative optimised implementation *)
let assume σ π =
if SATm π then { ⟨ok : ((), σ) | π⟩ }
else vanish

let assert σ π =
if%sat ¬π then error (FailedAssert, σ)
else ok ((), σ)

let skip σ = ok ((), σ)

let eval_action α σ v⃗ = (* ... *)

type ∆ = Pure

let produce σ [π] =
let* ((), σ) = assume σ π in
σ

let consume σ [π] =
if%sat ¬π then Lfail (PureMismatch, σ)
else ok ([], σ)

end

Nondet In this presentation, symbolic execution has been referred
to as a solution to handling non-determinism when it yields too many
branches. The nondet action embodies this approach: the concrete
action yields an infinite number of branches, returning all values v ∈ Val .
On the other hand, the symbolic action yields a unique branch with
a fresh symbolic variable of sort Val . The associated path condition
is true, rendering the symbolic variable unconstrained and, therefore,
satisfying the requirement that it is modelled by all values.

σ

⟨σ | π⟩

Figure 6.9: The assume π symbolic
processAssume We provide two implementations of assume. The first is ob-

tained by lifting the concrete implementation by swapping the concrete
execution monad for the symbolic execution monad. However, this
implementation leads to an unnecessary check for the satisfiability of
¬π. Therefore, we propose an alternative approach that only checks for
the satisfiability of π and vanishes if it is not. In practice, an assume

function should be provided directly by the symbolic execution monad
library, performing this trick once and for all.

While the first implementation can be straightforwardly proven sound
by simply applying Theorems 6.16 and 6.18, the latter corresponds
to the more classical implementation of assume in symbolic execution
engines. Both are equivalent, and the corresponding symbolic process
is depicted in Figure 6.9.

70 gillian

Assert The symbolic assert is also derived by lifting the concrete
implementation. Note that the erroneous case has been deliberately
placed as the first operand of the conditional branching. This placement
leverages the branch operator optimisation outlined in §6.6. When
using this optimisation, if the guard ¬π is deemed unsatisfiable by the
solver, the satisfiability of π will not be checked to continue execution.
Under the assumption that assert statements should be successful more
often than not, this decision should reduce the overall number of queries
sent to the solver.

Moreover, should the engine adopt an OX fail-fast execution strategy,
it would terminate execution the moment the guard is found to be
satisfiable, avoiding exploration of the successful case when verification
is doomed to fail.

These two optimisations consolidate the process into a unique en-
tailment check: it verifies that π must hold by checking that ¬π is
unsatisfiable. In other OX tools, assert statements are usually executed
using a single entailment check. This behaviour is naturally obtained
by adding simple optimisations to the lifted implementation.

We occasionally use if%ent instead of if%sat when the desired be-
haviour is a single entailment check for the guard π. If this check is
successful, the first branch is executed; if it fails, the second branch is
executed.

Produce pure The symbolic producer for the pure core predicate is
simply a lift of the concrete producer and is identical to the assume

action. Therefore, it requires no further explanation.

Consume pure As stated in the description of the concrete producer
for the pure core predicate, its implementation is identical to that of
assert, apart from the erroneous case, which yields a logical failure
instead of an error. All comments about optimisations made in the
context of the assert action also hold in the context of the pure
consumer.

(* UX -specific implementation *)
let consume_pure σ π =
assume σ πIn addition, recall that in UX execution, logical failures provide no

information and are, therefore, ignored. This means the pure consumer
can be further optimised to drop the erroneous branch early. By doing
so, the implementation of the pure consumer becomes identical to the
assume. The implementation of Gillian adopts this optimisation and
performs an assert or an assume, depending on the mode.

6.8.2 Symbolic linear heap

Recall that every state in the linear heap state model is a partial finite
map from natural integer to values, or ∅ indicating the address has
been freed.

σ ∈ Σ = N fin−−⇀ Val∅

Structure of the symbolic heap The art of creating a symbolic state
model resides in choosing which components to abstract and which to
keep more concrete. For instance, the heap could be entirely abstracted

symbolic execution 71

to a symbolic array26 where each cell contains either a natural number, 26 Using the SMT-Lib theory of
arrays where each element contains
an ADT with three cases.

the special ∅ value, or a special missing ⊥ value. However, this
approach would require complex universally quantified expressions27 27 A rule of thumb for improving the

performance of symbolic execution
is to avoid quantified formulae when
possible.

to, for instance, define the empty heap (∀i. σ(i) = ⊥)

type value =

| Active of Val

| Freed

type Σ = (N, value) Map.t

Instead, we propose a simpler abstraction that maintains the con-
creteness of the freed value and the partial finite map structure, only
abstracting the addresses and symbolic values.

σ ∈ Σ = N fin−−⇀ N∅

Note that a partial map could be equivalently represented as a list of
its bindings. Such a list of heap chunks is the representation employed
by Viper or VeriFast28. 28 VeriFast’s state representation

is a list of heap chunks, which do
not differentiate between points-
to predicates and more complex
predicates (e.g. list predicates).

The satisfaction relation for the symbolic heap is defined inductively:

ε, ∅ |= ∅
ε, [a(ε) ↦→ ∅] ⊎ σ |= [a ↦→ ∅] ⊎ σ ⇔ ε, σ |= σ

ε, [a(ε) ↦→ v(ε)] ⊎ σ |= [a ↦→ v] ⊎ σ ⇔ ε, σ |= σ

In particular, note that the map [x ↦→ 0; y ↦→ 0] has no interpretation
under ε when ε(x) = ε(y), due to the use of the disjoint union operator
⊎.

let load σ a =
match σ(a) with
| Some v →

ok (v, σ)
| Some ∅ →

error (UseAfterFree, σ)
| None →

miss (MissingCell, σ)

The load action Remember the implementation of the concrete load
action, which is copied in the margin. Unfortunately, this implementa-
tion cannot soundly be lifted using our composition operators using
let load σ a = match σ(a) with ...

The culprit lies in the map access operation σ(a) that cannot be lifted
to the access σ(a). Doing so would perform a syntactic equality check
instead of a semantic equality check when finding the correct binding
in the map.

To illustrate, consider the heap σ = [x ↦→ 0, y ↦→ 1]. What should
happen when loading address z? There are three cases to consider, as
depicted in Figure 6.10:
• if z = x, the load should return 0 and the state remains unchanged;
• if z = y, the load should return 1 and the state remains unchanged;

and
• if z /∈ {x, y}, the load should yield a missing outcome, as the cell is

not provably in the heap.

σ

⟨Ok : (0, σ) | z = x⟩
⟨Ok : (1, σ) | z = y⟩

⟨Err : (MissingCell, σ) | z /∈ {x, y}⟩

Figure 6.10: A symbolic load of
address z in the heap σ = [x ↦→
0, y ↦→ 1]

To obtain this behaviour, we must implement a sound symbolic
process with respect to concrete map access. We call this process
symbolic_map_get. This function must iterate through all the bind-
ings of the map, checking for equality with the given address. Below,
we provide its implementation:

72 gillian

let symbolic_map_get σ a =
match σ with
| ∅ → ok None
| [a′ ↦→ v∅] ⊎ σ′ →
if%sat a = a′ then
ok (Some v∅)

else
symbolic_map_get σ′ a

let load σ a =
let* looked_up = symbolic_map_get σ a in
match looked_up with
| Some v → ok (v, σ)
| Some ∅ → error (UseAfterFree, σ)
| None → miss (MissingCell, σ)

The symbolic load action can then be lifted from the concrete one
by using the symbolic map access function, as done above on the right.
This implementation can now successfully be proven sound with respect
to the concrete implementation by applying Theorems 6.16 and 6.18.
It will yield the expected three branches in the example case presented
above.

Optimisations Although it is generally necessary to iterate through all
elements of the map to ensure soundness, there are frequent instances
where this can be avoided. Recall that the map only has models if
the addresses are disjoint. Moreover, two symbolic expressions that
are syntactically equal are also guaranteed to be semantically equal,
independently of the path condition. Therefore, if the address looked
for is syntactically present in the domain of the heap, then accessing
the map directly is sound

let optim_symbolic_map_get σ a =
match σ(a) with
| Some v∅ → ok v∅

| None → symbolic_map_get σ aAssuming map accesses are performed orders of magnitude faster
than SAT checks, it is beneficial always to perform a direct map access
and fall back to iterating through the bindings only if it is not. In
practice, addresses can be put in a normal form to maximise the chances
of a direct hit.

Approximations A common approximation consists of preventing the
engine from branching when accessing an address in a partial map.
Instead of checking which binding may correspond to the provided
address using a SAT check, the engine checks which binding must
correspond to the provided address using an entailment check. The
corresponding implementation is in the margin with differences from
the previous implementation highlighted in purple.

let symbolic_map_get σ a =
match σ with
| ∅ → Abort

| [a′ ↦→ v∅] ⊎ σ′ →
if%ent a = a′ then ok v∅

else symbolic_map_get σ′ aIf the value cannot be found in the map, the engine cannot determine
if the value is missing and must immediately fail, returning Abort.

This approach is over-approximating and may lead to false positives.
For instance, in the example provided in Figure 6.11, the implementa-
tion using entailments as checks would yield a failure when dereferencing
z, as it would be unable to prove that address z must be equal to x or
must be equal y.

void load_either(int* x, int* y,
int* z)

//@ requires x → 0 * y → 0 *
//@ (z == x || z == y);
//@ ensures (result == 0);
{ return *z; }

Figure 6.11: An example case where
using entailment leads to a false
positive.

However, this approach is also more predictable as it prevents the
engine from branching and is therefore taken by VeriFast and Viper. If
a user wants to verify this specification, they must provide additional
annotation to force the engine to consider both cases independently.
This is a trade-off between automation and predictability and is a
choice that must be made by the designer of the verification tool. In
particular, the specific case depicted in Figure 6.11 is rare enough that
users may be willing to accept the false positive in exchange for more

symbolic execution 73

predictability of the engine.
Gillian-C and Gillian-JS use the approximate approach29 when 29 In UX mode when it is impossible

to decide, the branch is dropped
instead of raising a warning.

handling object locations, but use the exact approach when handling
offsets or properties within an object. This allows for a good balance
between automation and predictability and is a design choice that has
been found to work well in practice.

The PointsTo core predicate The linear heap state model exposes a
core predicate x ↦→ v that models a cell at address x containing value
v.

The symbolic consumer closely resembles the load action, with
the only distinction being that it removes the accessed cell from the
heap; hence, we won’t elaborate on its implementation here. In the
implementation of the producer, we discuss another trade-off between
optimisation, approximation, and optimisation.

In UX mode, the symbolic producer must ensure that all branches
with a satisfiable path condition have at least one model. Therefore,
the path condition must ensure that the produced cell is disjoint from
all the other cells in the heap. More formally, the following must always
hold, where ≡ is syntactic equality:

π |=

⎛⎜⎜⎝ ⋀︂
a,a′∈dom(σ)

a ̸≡a′

a ̸= a′

⎞⎟⎟⎠ void nop(int* x, int* y)
//@ requires x → 0 * y → 0 *
//@ (x == y);
//@ ensures false;
{ return; }

Figure 6.12: An example of valid OX
specification that VeriFast cannot
verify automatically. The syntax is
adapted to match our presentation.

Therefore, the symbolic producer for the points-to core predicate
must construct the disjointness constraint by iterating through the
bindings of the map and adding this constraint to the path condition.

Conversely, in OX mode, there is no requirement for the existence of
a model, and hence, this invariant need not be enforced. The symbolic
producer can add the new cell to the heap without further checking.30: 30 If the address is already syntacti-

cally in the heap, production should
result in an unfeasible heap. This
over-approximating implementation
would replace the binding, but that
is not unsound.

let produce_points_to σ a v =
ok σ[a ↦→ v]

This implementation is substantially more efficient than the one required
in UX mode. However, this performance boost sacrifices automation,
as users may be required to prune some infeasible paths manually.

For example, VeriFast does not enforce disjointedness of addresses
in the heap31. As such, it cannot automatically prove the specification

31 It does enforce disjointedness
of fields for objects with identical
syntactic addresses, but this is not
enough for UX soundness.

provided in Figure 6.12 and instead requires additional annotations. In
contrast, Gillian-C can perform the proof automatically, though not as
efficiently32.

32 An example further comparing
performance and automation of
VeriFast and Gillian-C is provided in
Chapter 11

Chapter 7

Analyses

The unified parametric compositional execution framework presented
in the previous chapters can host three kinds of analysis.

The first one, whole-program symbolic testing, symbolically executes
the program from scratch to completion, producing results and guaran-
tees similar to tools like CBMC.

The second one, compositional verification, verifies each function
specification in isolation. This analysis is similar to that proposed by
VeriFast or Viper.

The third one, automatic UX specification synthesis, automatically
generates bounded under-approximate specifications for each function.
This analysis is similar to that proposed by Infer:Pulse. However,
Infer:Pulse also filters the generated specification to signal only manifest
bugs (i.e., those that are always reachable in any context). This extra
step has not yet been implemented in Gillian and is left as future work.

This chapter describes these analyses, providing additional defini-
tions and succinct examples when required.

7.1 OX and UX whole-program symbolic testing

Gillian’s core symbolic execution engine can be used to implement a
non-compositional analysis by disabling the application of function
specifications1. Programs are executed by running the main function 1 Remember that, when executing a

function, the specification semantics
checks the environment Γ for the
existence of a corresponding specifica-
tion. If there is none, the body of the
function is executed instead.

and a given initial state until execution terminates. It is possible to
use either an OX or a UX engine, which will guarantee the absence
of false negatives or false positives. It is also possible to use an EX

engine, which should find exactly all the bugs if it terminates. However,
exactness is often challenging to maintain when programs and semantics
grow in complexity.

Of course, this analysis has a few restrictions. First, the analysis user
must set up test harnesses, also called symbolic tests. These tests are
similar to unit tests, except that developers can use the nondet actions
to explore many concrete branches using a single symbolic branch.

Second, the symbolic execution engine might enter an infinite loop in
the program, meaning that analysis would never terminate. To address
this challenge, it is standard practice for whole-program symbolic
testing tools to impose an upper bound on the number of iterations
a loop (or a recursive function call) may execute. This approach is
adopted by Gillian, rendering it a bounded symbolic testing tool.

Gillian’s whole-program symbolic testing engine is implemented dif-
ferently from CBMC2, but it provides the same guarantees as bounded

2 CBMC compiles the entire program
with unrolled loops to one big SAT
formula. This process is sometimes
called symbolic compilation [LB23].
A similar behaviour could be simu-
lated in our framework by batching
all SMT queries until all branches
are terminated and creating a single
query composed of the disjunctions
of the path conditions for all erro-
neous branches.model checkers, such as CBMC.

In fact, a version of Gillian-C exists that can substitute CBMC,

76 gillian

analyse the same inputs, and produce similar results. It has been used
inside industry as a prototype alternative back-end for the Kani Rust
model checker.

Example We illustrate the use of whole-program symbolic testing by
re-using Example 6.1. In Figure 7.1, we provide an abs function that
replaces an integer in place in memory with its absolute value, as well
as its test harness, i.e. a main function that acts as the entry point for
the symbolic execution.

void abs(int* x) {
if (*x < 0) {
*x = -(*x)

}
}

int main() {
int* x = alloc();
*x = nondet();
abs(x);
assert(*x >= 0);
return 0;

}

Figure 7.1: Symbolic test harness for
testing the in-place abs function

The main function would be compiled to the SIGIL code provided
in Figure 7.2, where action calls have been placed between angular
brackets to distinguish them from function calls.

main(){
let x = ⟨alloc⟩() in

let v = ⟨nondet⟩() in

let _ = ⟨store⟩(x, v) in
let _ = abs(x) in

let y = ⟨load⟩(x) in
let _ = ⟨assert⟩(y ≥ 0) in

0

}
Figure 7.2: Main function from
Figure 7.1 compiled to SIGIL

Executing this function from the empty state yields an execution
similar to the one represented in Figure 6.2, and show that the assert
statement would always pass, for any value v.

7.2 Compositional verification

Compositional verification consists of verifying that a set of user-
provided specifications for a program is valid.

The verification procedure In our framework, compositional verifi-
cation uses the specification semantics with a specific solver and state
model compatible with OX analysis. Given a program γ, the tool
user writes OX specifications for each function they wish to verify,
creating a specification context Γ. Each function f is then verified
using the following procedure which returns true if it satisfies its given
specification, and false otherwise:

let verify Γ γ f =
let all_results =

let f(x⃗) {e} = γ(f) in

let { P } f(x⃗) { Ok : r. QOk }{ Err : r. QErr } = Γ(f) in
let y⃗ = fv(P) in

1 let θ = [x⃗, y⃗ ↦→ fresh_svar()] in

2 let* σ = produce_asrt θ 0 P in

3 let* (o : v, σ′) = eval γ Γ θ σ e in

4 let* θ
′
= θ [r← v] in

5 consume_asrt θ
′
σ′ Qo

in
∀⟨ol : _ | _⟩ ∈ all_branches. ol = Ok

To verify that the function with identifier f in program γ satisfies its
specification in Γ, step 1 creates a substitution that maps each formal
argument and free variable of the pre-condition (implicitly universally
quantified) to a fresh unconstrained symbolic variable. In step 2 , a
state σ is obtained by producing the pre-condition P in the empty state
0. Combined with 1 , this step ensures that, if the function successfully
verifies, it does so for all states that satisfy P . The function body is
then executed in step 3 , using the initial substitution θ and σ, yielding
an outcome o ∈ {Ok, Err}, a result value v and an outcome state σ′3. 3 Here, the let* operator handles and

propagates logical and missing errors,
but exposes Ok and Err outcomes.

Step 4 extends the initial substitution θ with variable r and sets its
value to v, yielding θ

′
. Using this substitution, step 5 matches each

resulting branch against the corresponding post-condition QOk or QErr,

analyses 77

depending on its outcome. Verification is successful if all branches
terminate without logical failure or missing outcome.

Example Let us provide the detailed steps of verifying the following
valid specification4 of the abs function from Figure 7.1: 4 We hide the calls to the PointsTo

and Pure core predicates behind
straightforward syntactic sugar.{ x ↦→ y } abs(x) { Ok : r. ∃z.(r = ()) ∗ x ↦→ z ∗ z ≥ 0 }

The substitution θ = [x ↦→ x, y ↦→ y] created in step 1 assigns fresh
symbolic variables to the formal argument x and the free variable y.

Producing the pre-condition in step 2 yields a single branch with
state σ = [x ↦→ y]. The producer of the points-to assertion does not
enforce any new constraints when the heap is empty before production,
and therefore the resulting path condition is true:

produce_asrt θ 0 (x ↦→ y) = { ⟨[x ↦→ y] | true⟩ }

Figure 7.3 shows the symbolic execution tree obtained by symboli-
cally executing the abs function starting from σ and the substitution θ.
We annotate each node in the tree with the evaluated expression, as
well as the heap and path condition before execution of the expression.

*x < 0

*x = - (*x)

σ = [x ↦→ −y]
π = y < 0

vr = ()

σ = [x ↦→ y]

π = y < 0

σ = [x ↦→ y]

π = ¬(y < 0)

vr = ()

σ = [x ↦→ y]

π = true

Figure 7.3: Execution tree for the abs
function starting from

θ = [x ↦→ x]
σ = [x ↦→ y]
π = true

The tree corresponds to a view of the
execution of the C code instead of
the corresponding SIGIL code. The
latter would yield a big tree that is
harder to read without providing
more information.

The execution above terminates successfully with two branches: if y
was less than 0, the value at address x is updated to its negation, and
otherwise, the heap is left unchanged. In both cases, the return value is
vr = (), an interpretation of the C void type. vr is bound to the return
variable r during step 4 , resulting in the substitution θ

′
= θ [r← ()].

Finally, step 5 consumes the post-condition from the final state
using the substitution θ

′
.

We only go through the matching process for the branch where y < 0,
as the other branch works analogously. First, the following matching
plan is created:

plan(Q, θ
′
) = [a (r = (), [])

b (x ↦→ z, [z← O0])

c (z ≥ 0 , [])]

In step a of the matching plan, the pure assertion r = () is consumed
independently of the path condition as θ

′
[r] = ().

78 gillian

In step b , the assertion x ↦→ z is consumed. Before consumption, the
variable x is substituted to the symbolic value θ

′
[x] = x. Independently

of the path condition, x ↦→ −y is the only cell at address x, and it
is successfully removed from the heap, yielding the new heap σ = ∅.
In addition, the consumer returns the value −y, which is temporarily
bound to the placeholder variable O0. In turn, following the matching
plan, the value of O0 is bound to z, resulting in the substitution:

θ
′
= [x ↦→ x, y ↦→ y, r ↦→ (), z ↦→ −y]

Finally, in step c , the assertion z ≥ 0 is consumed. Since θ
′
[z] = −y,

and π |= −y ≥ 0, consumption is performed successfully.
The verification is successful since the post-condition has been suc-

cessfully consumed by all branches.

Soundness We show the verification procedure to be sound. The
corresponding theorem below states that if a procedure is verified, then
it is valid with respect to its specification. The theorem applies if the
function is recursive and the specification is used to prove itself. Note
that we do not prove that each function satisfies its specification in the
classical way but in the intuitionistic way (denoted I|=), where resources
are allowed to leak:

γ
I|= { P } f(x⃗) { o : r. Q } ⇐⇒ γ |= { P } f(x⃗) { o : r. Q ∗ True }

Gillian, at the moment, does not implement any check to ensure the
absence of resource leaks, while, for instance, VeriFast does5. 5 We could assume the existence of

a theoretical leak check to prove the
theorem, but decide to be closer to
the actual Gillian implementation.

Theorem 7.1 (Compositional verification: soundness).
Let d = f(x⃗) {e} be a function definition, s = { P } f(x⃗) { o : r. Q }
be an OX function specification for f , and I|= (γ,Γ) be an OX-valid
environment, where f /∈ dom(γ). Let γ′ = γ [f ← d] and Γ′ = Γ [f ← s].
If verify Γ′ γ′ f s = true, then I|= (γ′,Γ′)

7.3 Automatic UX specification synthesis

As opposed to the previous two analyses, automatic UX specification
synthesis does not require any effort from the developer to set up
symbolic harnesses or write specifications. Instead, a technique called bi-
abduction is applied to automatically infer a set of under-approximating
specifications for each function in the program.

This analysis also leverages the function-compositionality of the
symbolic specification semantics, allowing each function to be analysed
in isolation. If the synthesis has previously been used to produce a set
of specifications and the code is modified, the analysis does not need
to be performed again on the entirety of the code base. Instead, only
the functions that have changed and those that depend on them must
be re-analysed.

In this section, we describe a state model transformer that enhances
any existing state model with the ability to perform bi-abduction, as
long as the input state model provides fixes for the missing errors.

analyses 79

7.3.1 Fix-from-error bi-abduction

Bi-abduction is a technique that enables incremental discovery of the
resources needed to execute a given piece of code. It was first introduced
in the over-approximating setting6 and later formed the basis of the 6 Calcagno et al., “Compositional

shape analysis by means of bi-
abduction”, 2009 [Cal+09]

bug-finding tool7 Infer8. More recently, it was ported to the UX setting
7 Infer would perform an over-
approximating bi-abduction before
using heuristics to filter out what
seemed to be false positives. The re-
sult was a bug finder that guaranteed
neither the absence of false positives
nor false negatives, though it was
still successful.
8 Calcagno et al., “Infer: An Auto-
matic Program Verifier for Memory
Safety of C Programs”, 2011 [CD11]

of true bug-finding, yielding a new tool called Infer:Pulse9, guaranteeing

9 Raad et al., “Local Reasoning
About the Presence of Bugs: Incor-
rectness Separation Logic”, 2020
[Raa+20]; and Le et al., “Finding
real bugs in big programs with
incorrectness logic”, 2022 [Le+22]

the absence of false positives.
We use a formalisation of bi-abduction inherited from JaVerT 2.010,

10 Fragoso Santos et al., “JaVerT 2.0:
compositional symbolic execution for
JavaScript”, 2019 [Fra+19]

which we call fix-from-error bi-abduction, and adapt it to the parametric
and UX setting. For this approach, we require the state models to
satisfy an additional condition: missing outcomes obtained from action
evaluation and consumption must carry a list of fixes. Each of these
fixes is a symbolic assertion, that is, an assertion that uses symbolic
variables instead of standard variables. These fixes correspond to
additional resources that enable execution to continue. Then, when a
missing outcome is encountered during bi-abductive execution, the fix
is applied to the current state, and execution is restarted.

Example Consider evaluating the expression ⟨store⟩(x, z), starting
from substitution θ = [x ↦→ x, z ↦→ z] and empty heap σ = ∅. Evalua-
tion yields a single missing outcome depicted in Figure 7.4, where the
missing outcomes carry two fixes.

∅

⟨Miss : ([x ↦→ y;x ↦→ ∅], ∅) | true⟩

Figure 7.4: Symbolic execution
process resulting from the evaluation
of the action ⟨store⟩(x, z) in the
empty heap.

The two fixes are the symbolic assertions x ↦→ y (where y is a fresh
symbolic variable) and x ↦→ ∅. By providing these fixes, the state
model suggests that, by adding either a valid allocated cell or a freed
cell at address x, execution would continue without missing error.

Both symbolic assertions are produced11 in the original heap σ to 11 Production of symbolic assertion is
defined similarly to normal assertions,
but does not require a substitution.

restart execution. Doing so yields two new executions, depicted in
Figure 7.5.

[x ↦→ y]

⟨Ok : ((), [x ↦→ z]) | true⟩

[x ↦→ ∅]

⟨Err : (UseAfterFree, [x ↦→ ∅]) | true⟩

Figure 7.5: Executions obtained
from applying the fixes obtained in
Figure 7.4

On the left, the execution obtained by successfully applying the
valid-cell fix terminates, having updated its content to z. On the
right, the execution obtained by applying the freed-cell fix terminates
erroneously with a use-after-free error.

These two executions can then be transformed into valid under-

80 gillian

approximate specifications for the ⟨store⟩(x, z) expression:

[x ↦→ y]

⟨store⟩(x, z)
[Ok : r. x ↦→ z ∗ (r = ())]

[x ↦→ ∅]

⟨store⟩(x, z)

[Err :
r. x ↦→ ∅ ∗
(r = UseAfterFree)

]

7.3.2 Bi-abductive state model transformer

Instead of keeping track of several executions simultaneously, it is
possible to perform a single bi-abductive execution by keeping track of
both the current state and the anti-frame, the list of fixes applied for
this path. The above example becomes a single execution, depicted in
Figure 7.6.

∅

⟨Ok : ((), ([x ↦→ z], [x ↦→ y])) | true⟩ ⟨Err : (UseAfterFree, ([x ↦→ ∅], [x ↦→ ∅])) | true⟩
Figure 7.6: An example of bi-
abductive executionBi-abductive execution returns two branches, each carrying an out-

come, a return value, a pair composed of the final heap and the anti-
frame, and a path condition.

Note that the signature of bi-abductive execution is much like that
of normal symbolic execution, except that it involves a pair of a state
and an anti-frame instead of a single state. This similarity suggests the
potential to create a bi-abductive state model transformer that takes a
state model and produces a new state model for bi-abductive execution.
We call this transformer Bi.

Given a symbolic state model S, the bi-abductive state model Bi(S)
has the same set A of actions and ∆ of core predicates as S. Each
symbolic state of Bi(S) is a pair that comprises a symbolic state σ ∈ S.Σ
and a symbolic assertion A.

When evaluating actions, a first attempt is performed using action
evaluation from S, i.e. without bi-abduction. If this fails with a Miss

outcome, fixes are extracted from the return value using the fixes

function12 that must be implemented by the symbolic state model S. 12 As opposed to the high-level
description given above, we use the
fixes function to avoid changing the
signature of the action evaluator.

We provide a simplified definition in Figure 7.7, which assumes that
the fixes function always returns a unique fix as to avoid awkward
notations. In reality13, the fixes function returns a list of fixes, each 13 Its implementation can be found in

the open-source Gillian repository in
the BiState module.

of which is applied before continuing. If the list is empty, execution
vanishes, and nothing is inferred.

Note that the bi-abductive state model only makes a single attempt
at fixing each error. If a fix is insufficient and leads to another missing
error, no attempt is made to fix the new error to avoid infinite loops. In
particular, no constraint on the fixes function is required to guarantee
the soundness of the analysis. A fix that is too weak will lead to another
missing outcome, which will terminate execution without producing any
specifications for that fix. In contrast, a fix that is too strong will either
yield an infeasible state, which will also terminate execution without
producing any specification or will lead to a successful execution with a

analyses 81

module Bi (S : sig
include Symbolic_state_mode

val fixes : v → Asrt∆ list
end) = struct

type Σ = S.Σ × Asrt∆
let 0 = (S.0, emp)

type A = S.A

let eval_action α (σ0, A) v⃗ =

let* (o, v, σ1) = S.eval_action α σ0 v⃗ in
match o with

| Ok | Err → (o, v, (σ1, A))
| Miss →
let [F] = S.fixes v in
let σ2 = produce_asrt S.produce F σ0 in

let* (o′, v′, σ3) = S.eval_action α σ2 v⃗ in

(o′, v′, (σ3, A ∗ F))

...
end

Figure 7.7: Formal definition of the
bi-abductive state model transformer

sound but over-specified specification. We consider this a strength of our
approach, as it allows for the fixes to be implemented incrementally
by the tool developer, starting with a simple best-effort version. Over
time, the quality of the fixes function may be improved, but soundness
is never sacrificed.

The consumer for the bi-abductive state is defined similarly to the
action evaluation, where missing errors are fixed. On the other hand,
the producer cannot fail and is hence defined by simply calling the
producer of the underlying state model. Both are omitted from the
above definition for brevity.

7.3.3 Specification inference algorithm

The synthesise function, which performs specification inference, is
defined in Figure 7.8. It receives four arguments: a specification context
Γ; a program γ; the function identifier f of the function to analyse; and
a partial pre-condition P , which can be used to encode statically known
information about the function such as the types of the arguments. It
returns a set of under-approximating specifications for the function.
Below, we give a detailed description of each step of the algorithm.

Step 1 creates a substitution θ
x⃗,y⃗

id that maps each formal argument
and free variable of the pre-condition P (implicitly universally quan-
tified) to a fresh unconstrained symbolic variable of the same name.
Step 2 produces the partial pre-condition in the empty symbolic state
0 using the producer of the parameter state model S and substitution
θ
x⃗,y⃗

id . This production yields an initial state σ, which is combined with
the initial anti-frame emp14 to form the initial bi-abductive state. This

14 The symbolic state model returned
by Bi transformer supports the emp

and Pure core predicates.

initial bi-abductive state is used15, together with the identity substitu- 15 We explicitly use the bind operator
of the symbolic execution monad
since the let* operator is already
used as the bind operator of the set
monad.

tion θ
x⃗,y⃗

id , to evaluate the function body e. This yields a set of branches
of the form ⟨o : (v, (σ′, A)) | π⟩, where σ′ is the final state and A is the
final anti-frame.

82 gillian

let synthesise γ Γ f P =
let f(x⃗) {e} = γ[f] in
let y⃗ = fv(P) in

1 let θ
x⃗,y⃗
id = [x⃗ ↦→ x⃗, y⃗ ↦→ y⃗] in

2 let* ⟨o : (v, (σ′, A)) | π⟩ =
Symex.bind

(produce_asrt S θ
x⃗,y⃗
id S.0 P)

(fun σ → eval Bi(S) Γ γ θ
x⃗,y⃗
id (σ, emp) e)

in

3 if o /∈ {Ok, Err} then vanish else

4 let P ′ = P *
←−−
θ
x⃗,y⃗
id (A) in

5 let Q = to_asrt θ
x⃗,y⃗
id v σ′ π in

6 return [P ′] f(x⃗) [o : r. Q ∗R]

Figure 7.8: Formal definition of the
specification inference algorithm
using bi-abduction. It assumes the
use of a bi-abductive state model
obtained through the Bi transformer.
The let* operator corresponds to the
bind operator of the set monad.

If the outcome of symbolic execution is Miss or Lfail, it corresponds
to a reasoning error and not to a real behaviour of the function, and
it is discarded in step 3 . Otherwise, step 4 computes the new pre-

condition P ′ = P ∗
←−
θ
x⃗,y⃗

id (A), where
←−
θ
x⃗,y⃗

id is the inverse substitution that
maps the symbolic variables x⃗ and y⃗ to the variables x⃗ and y⃗. Subse-
quently, step 6 computes the post-condition by transforming the final
symbolic configuration ⟨(v, σ′) | π⟩ into an assertion16, preserving the 16 The existence of such a to_asrt

function is admitted for this pre-
sentation. In practice, it should be
implemented by the state model.

connection between logical variables and symbolic variables specified by
θ
x⃗,y⃗

id . Finally, the synthesised ISL specification [P ′] f(x⃗) [o : r. Q]

is returned in step 6 .

7.3.4 Soundness

The specification inference algorithm guarantees the correctness of the
under-approximate specifications it infers.

Theorem 7.2 (Specification synthesis: soundness).

|= (γ,Γ) ∧ [P ′] f(x⃗) [o : r. Q ∗R] ∈ synthesise Γ γ f P

=⇒ γ |= [P ′] f(x⃗) [o : r. Q ∗R]

The proof of this theorem, provided in Appendix D.2, is challenging
and worth discussing here. The main proof is performed by a) defining
a concrete bi-abductive state model transformer; b) proving that the
execution performed using this transformer satisfies the property given
in Theorem 7.3, described shortly; c) proving that the symbolic bi-
abductive state model transformer is sound with respect to the concrete
bi-abductive state model transformer; and d) proving that the synthesis
algorithm is sound knowing all of the above. Here, we focus on step b)
and the below theorem.

Theorem 7.3 (Concrete bi-abductive execution: soundness).
If UX|= (γ,Γ), then

γ,Γ ⊢ (σ, emp), e ⇓Bi(S)θ o : (v, (σ′, A)) ∧ o /∈ {Miss, Lfail}
=⇒ ∃σs. σ.prodA()⇝ σs ∧ γ ⊢ σs, e ⇓Sθ o : (v, σ′)

This theorem states that in a valid environment (γ,Γ), when using
the specification semantics with the bi-abductive state model Bi(S), if

analyses 83

the evaluation of any expression e, starting from a partial17 state σ 17 i.e. with potentially missing
resourceand an empty anti-frame emp, yields an outcome o a return value v,

a final state σ′ and an anti-frame A where o is not a reasoning error,
then A is a valid fix for this execution. Specifically, there exists a fixed
state σs obtained by producing A in σ, such that evaluating e using σs
and the original state model S without bi-abduction or specification
execution yields the result o : (v, σ′).

σ, emp

σs

o : (v, (σ′, A))

o : (v, σ′)

γ,Γ ⊢ · · · , e ⇓Bi(S) · · ·

γ ⊢ · · · , e ⇓S · · ·

Figure 7.9: Representation of the
soundness result from Theorem 7.3.

This property is easy to prove without specification calls since it holds
for the base cases and action evaluation and is naturally preserved
by sequential composition. However, proving that it also holds for
specification calls is a substantially more complex task. The main
difficulty comes from the fact that consumption algorithm does not
generally preserve the required property.

Let us illustrate this difficulty using an example. Take the specifica-
tion

[0 ↦→ 0 ∗ 1 ↦→ 1] f() [0 ↦→ 1 ∗ 1 ↦→ 2]

which is a valid ISL specification for a function f that increments the
values at address 0 and 1. Assume that the initial heap is σ = [0 ↦→ 0].
Executing this specification starts by consuming the pre-condition,
which we describe step by step:
1 The first cell assertion 0 ↦→ 0 is consumed in heap σ, yielding the

new heap σ′ = ∅.
2 The second cell is consumed in σ′, which yields a missing outcome.
3 The linear heap state model suggests a fix. It can, for instance,

suggest the fix 0 ↦→ 0 ∗ 1 ↦→ 1, which is successfully produced in σ′

to obtain σ′′ = [0 ↦→ 0, 1 ↦→ 1]. Unfortunately, this fix is invalid, as
it duplicates the cell at address 0. However, since the cell at this
address has already been consumed in step 1 , there is no local way
of detecting, at this step, that this fix is invalid.

4 The cell assertion 1 ↦→ 1 is consumed, yielding a new heap σf =

[0 ↦→ 0], and the final antiframe A = 0 ↦→ 0 ∗ 1 ↦→ 1.

This consumption does not satisfy the property specified by Theo-
rem 7.3 since producing the anti-frame A in the pre-condition does not
yield a fixed state σs that can be used to replay the successful execution.
Specifically, A is not disjoint from the initial heap σ, ¬(A# σ)18, and 18 We use the assertion A as a state

here, since assertions in UX must
be strictly exact, and therefore
corresponds to a unique state, σA.

thus its production would vanish. Fortunately, this issue is temporary:
producing the post-condition 0 ↦→ 1 ∗ 1 ↦→ 2 in σf will also vanish.
Since the theorem requires the whole execution to terminate, this be-
haviour does not break soundness for the bi-abductive execution of the

84 gillian

specification as a whole.

σ, emp (σf , A)
cons P

(σ′, A)
prod Q

σs σf
cons P

σ′
prod Q

Bi(S):

S:

Guaranteed to exists

for valid specs

Not yet guaranteed

to exist

Figure 7.10: The soundness result
may not hold in the temporary frame
state during specification execution
but is guaranteed to be recovered.

The guarantee that production of the post-condition will vanish when
invalid fixes are generated during consumption of the pre-condition is
crucial for the soundness of the algorithm and holds for any valid ISL
specification. Proving this guarantee, however, constitutes the main
challenge of the proof of Theorem 7.3.

Let us discuss this challenge further by looking at the Hasse diagram
of the states involved, provided in Figure 7.11. Starting from σ and
consuming the pre-condition P while performing bi-abduction yields
the state σf and anti-frame A. The final state σ′ is then obtained
by producing the post-condition Q in σf . We are trying to prove the
existence of the state σs that is obtained from producing A in σ and
lets us consume P to obtain σf .

σ

σs

σf

σ′

A P Q

Bi(S).consP

P Q
⇓S

σf σf

Figure 7.11: Hasse diagram of the
states involved in the proof. The
existence of σs = σ • A = σf • P

is to be proven. We highlight the
corresponding parts in blue.

Since we are executing a valid ISL specification, and Q has a model
(since it was produced in σf), we know that there exists a state in P

and a valid “vanilla” execution (i.e. without specification execution or
bi-abduction) of the function body from P to Q. Since this vanilla
semantics satisfies Frame addition, and Q is disjoint from σf , we learn
that P must be disjoint from σf and there is a similar valid execution
from σf • P = σs to σf •Q = σ′. The updated Hasse diagram is shown
in Figure 7.12.

We have successfully reduced the scope of the problem, although
the fact that σ •A = σs remains to be proven.

Next, let us inspect in more detail how σf is obtained from σ

and P during bi-abductive consumption. We call P1, . . . , Pn the core
predicates of P , and A1, . . . , An the fixes obtained when consuming
each core predicate of P 19 19 When Pi can be consumed without

any fix, we can simply set Ai = emp.At each step of consumption, the current state σi is fixed with

analyses 85

σ

σs

σf

σ′

A P Q

Bi(S).consP

P Q
⇓S

⇓S

σf σf

Figure 7.12: Updated Hasse diagram.
The information learned so far is in
purple, and the part left to prove is
in blue. The scope of the problem
has been reduced, and the parts
that we do not need anymore are
transparent.

Ai+1, before being used to consume Pi+1, yielding a new state σi+1, as
represented in Figure 7.13.

σ σ1

A1 P1

· · · σi σi+1

Ai+1 Pi+1

· · · σn−1 σf

An Pn

Figure 7.13: Consumption of a core
predicate Pi in the state σi with the
fix Ai yields the state σi+1.

The last key step of the proof consists of using the fact that σs =
P • σf to prove by induction that these operations can all be re-ordered
to obtain σs by producing each if Ai in σ. A visual representation of
the induction hypothesis after the last step is shown in Figure 7.14.
This completes the last missing connection in Figure 7.12 and hence
concludes the proof.

σ

σs

σf

A1

· ·
·

An Pn

· · ·

P1

A

Figure 7.14: Operations can be
proven to commute under the as-
sumption that P is disjoint from
σf .

Chapter 8

Constructing state models

The framework we have described so far enables compositional symbolic
execution and various kinds of analyses, requiring only the implemen-
tation of a symbolic state model. Unfortunately, the design of state
models can blow up in complexity for real-world languages. In par-
ticular, since state models are responsible for a large fragment of the
semantics, an equally large part of the soundness proof is delegated to
the designer of the state model.

Thankfully, state models are often made of several components that
are independent of each other. In addition, state models for various
languages often share common structures. For instance, while C and
JavaScript lie on opposite ends of the abstraction spectrum, their heaps
are both modelled as partial finite maps from object location to object,
and only the notion of object differs.

Drawing inspiration from the resource algebra (RA) constructions
in Iris1, we define state model constructions that can be reused and 1 described in Section 4.1 of Jung’s

thesis [Jun20]composed together to form more complex state models. These con-
structions are designed to preserve correctness properties from their
parameters, thereby largely alleviating the burden of proof from the
designer. In addition, some of the state models we propose are directly
adapted from Iris resource algebras, which is helpful to encode concepts
extracted from projects that make use of Iris, as is the case for several
components of the Gillian-Rust state model presented in Part III.

Comparison with Iris The constructions presented in this chapter are
twofoldly novel compared with the similar ones in Iris.

First, state models are formulated using symbolic actions, consumers
and producers, enabling their use within semi-automated verification
tools. As such, we can discuss various implementations that consider
trade-offs between efficiency, approximation, and predictability. In ad-
dition, it means that these constructions could potentially be imported
into other tools such as VeriFast or Viper2. 2 Although, to our knowledge, it is

not a current goal of the VeriFast
project.

Second, the constructions are designed and proven to be compatible
with both OX and UX reasoning, while Iris constructions are only
designed to be compatible with the former. In fact, a contribution of this
chapter is the identification of Iris constructions that are incompatible
with UX reasoning.

It would be interesting to investigate the connection between resource
algebras and state models more formally in the future.

The predicate state model The predicate state model presented in
this chapter fulfils a slightly different role in that it is purely designed
as a trick to encode inductive predicates in the symbolic state. As such,

88 gillian

it has no counterpart in Iris, where inductive predicates are shallowly
embedded in Coq. While its design is extracted from other existing
tools, its formulation as a state model transformer is novel and hints
at the possibility of encoding more complex transformers of the same
nature. In particular, the guarded predicate state model transformer
presented in Part III is a variation that, to our knowledge, does not
exist in any other tool.

8.1 Product of state models

We begin our list of constructions with the product state model, which
allows for the composition of two independent state models.

As it is the first construction to be presented, we take the pedantic
approach of exhaustively defining each of its layers – full state model,
compositional state model, core predicates, and symbolic state model –
maximising clarity for the reader.

Full product The product of two full state models is denoted S1 S2
and formally defined in Figure 8.1. Its set of states is the cartesian
product of the sets of states of S1 and S2. All actions of S1 and S2
apply to the product, and the corresponding set is defined using a
tagged union to accommodate overlapping sets. When an action from
the first (resp. second) state model is applied, its effect is projected
on the first (resp. second) component of the state, leaving the other
component unaffected.

module S1 S2 : Full_state_model = struct

type Σ = S1.Σ× S2.Σ
type A = | A1 of S1.A | A2 of S2.A

let eval_action α (σ1, σ2) v⃗ =
match α with
| A1 α1 →
let* (o, v, σ′

1) = S1.eval_action α1 σ1 v⃗ in
return (o, v, (σ′

1, σ2))

| A2 α2 →
let* (o, v, σ′

2) = S2.eval_action α2 σ2 v⃗ in
return (o, v, (σ1, σ

′
2))

end

Figure 8.1: Formal definition of the
product of two full state models S1
and S2. The let* operator corre-
sponds to the bind operation of the
non-determinism monad (it exposes
the returned outcomes).

Compositional product The product of two compositional state mod-
els is defined identically to the product of the full state models, i.e., by
substituting S1 and S2 by S1 and S2 in the above definition.

The only additional definition required is that of the composition
operator for the product states. It is straightforwardly defined as
follows and is undefined if any of the components is undefined:

(σ1, σ2) • (σ
′
1, σ
′
2) = (σ1 • σ

′
1, σ2 • σ

′
2)

Equipped with this operator, it can be trivially proven that (S1.Σ×
S2.Σ, (S1.0, S2.0), •) forms a PCM.

The first major lemma to be proven about the compositional product
is preserves m-soundness and m-frame preservation.

constructing state models 89

Lemma 8.1 (Product state model: concrete soundness).
If S1

c∼
m

S1 according to |=1c and S2
c∼
m

S2 according to |=2c, then

(S1 S2)
c∼
m

(S1 S2) according to |=1×2
c where

(σ1, σ2) |=1×2
c (σ1, σ2)⇔ σ1 |=1

c σ1 ∧ σ2 |=2
c σ2

In mathematical notations:

S1
c∼
m

S1 ∧ S2
c∼
m

S2 ⇒ (S1 S2)
c∼
m

(S1 S2)

Core predicates Similarly to actions, any core predicate that applies
to one of the components applies to the product. The product uses the
tagged union type ∆ = | C1 of S1.∆ | C2 of S2.∆ to accommodate over-
lapping sets. The satisfiability relation is projected on the appropriate
component as follows:

(σ1, σ2) |= ⟨C1 δ1⟩(v⃗i; v⃗o)⇔ σ1 |= ⟨δ1⟩(v⃗i; v⃗o) ∧ σ2 = 0

(σ1, σ2) |= ⟨C2 δ2⟩(v⃗i; v⃗o)⇔ σ1 = 0 ∧ σ2 |= ⟨δ2⟩(v⃗i; v⃗o)

If both sets of core predicates are strictly exact, then the core
predicates of the product are also strictly exact, preserving usability in
the context of UX analysis.

Lemma 8.2 (Product state model: strict exactness).
If all core predicates of S1 and S2 are strictly exact, then all core
predicates of S1 S2 are strictly exact.

Producers and consumers The producer and consumer function for
the compositional product, formally defined in Figure 8.2, are also
obtained by projecting the operation on the appropriate component of
the state depending on which state model the core predicate belongs
to (similarly to action evaluation).

Lemma 8.3 (Product state model: producers and consumers).
The producer and consumer of the product compositional state models
are valid according to Definition 5.5 and Definition 5.7.

Symbolic product The last layer to describe is the product of the
symbolic state models. The formal definition is provided in Figure 8.3.
Again, the set of states is the cartesian product of the sets of states of
the two symbolic state models. The actions and core predicates are the
same as in the compositional product. Action evaluation, producers and
consumers are defined by projecting the operation to the appropriate
component of the product.

Furthermore, the interpretation of the symbolic states is defined as:

ε, (σ1, σ2) |= (σ1, σ2)⇔ ε, σ1 |= σ1 ∧ ε, σ2 |= σ2

Put together, it is now possible to prove that the product symbolic
state model preserves the m-soundness of its parameters, for m ∈
{OX, UX}.

Lemma 8.4 (Product state model: symbolic soundness).

S1
s∼
m

S1 ∧ S2
s∼
m

S2 ⇒ (S1 S2)
s∼
m

(S1 S2)

90 gillian

module S1 S2 : Compositional_state_model = struct

(* ... *)

let 0 = (S1.0, S2.0)

type ∆ = | C1 of S1.∆ | C2 of S2.∆

let produce δ (σ1, σ2) v⃗i v⃗o =
match δ with
| C1 δ1 →
let* σ′

1 = S1.produce σ1 δ1 v⃗i v⃗o in
return (σ′

1, σ2)
| C2 δ2 →
let* σ′

2 = S2.produce σ2 δ2 v⃗i v⃗o in
return (σ1, σ′

2)

let consume δ (σ1, σ2) v⃗i =
match δ with
| C1 δ1 →
let* (ol, v⃗o, σ

′
1) = S1.consume σ1 δ1 v⃗i in

return (ol, v⃗o, (σ
′
1, σ2))

| C2 δ2 →
let* (ol, v⃗o, σ

′
2) = S2.consume σ2 δ2 v⃗i in

return (ol, v⃗o, (σ1, σ′
2))

end

Figure 8.2: Formal definition of
the consumer and producer for the
product of S1 and S2. The let*
operator corresponds to the bind
operation of the non-determinism
monad (it exposes the returned
outcomes).

module S1 S2 : Symbolic_state_model = struct

type Σ = S1.Σ× S2.Σ
type A = | A1 of S1.A | A2 of S2.A
val 0 = (S1.0, σ2.0)

let eval_action α (σ1, σ2) v⃗ =
match α with
| A1 α1 →
let* (o, v′, σ′

1) = S1.eval_action α1 σ1 v⃗ in
return (o, v′, (σ′

1, σ2))
| A2 α2 →
let* (o, v′, σ′

2) = S2.eval_action α2 σ2 v⃗ in
return (o, v′, (σ1, σ′

2))

type ∆ = | C1 of S1.∆ | C2 of S2.∆

let produce δ (σ1, σ2) v⃗i v⃗o =
match δ with
| C1 δ1 →
let* σ′

1 = S1.produce σ1 δ1 v⃗i v⃗o in
return (σ′

1, σ2)

| C2 δ2 →
let* σ′

2 = S2.produce σ2 δ2 v⃗i v⃗o in
return (σ1, σ′

2)

let consume δ (σ1, σ2) v⃗i =
match δ with
| C1 δ1 →
let* (ol, v⃗o, σ

′
1) = S1.consume σ1 δ1 v⃗i in

return (ol, v⃗o, (σ
′
1, σ2))

| C2 δ2 →
let* (ol, v⃗o, σ

′
2) = S2.consume σ2 δ2 v⃗i in

return (ol, v⃗o, (σ1, σ′
2))

end

Figure 8.3: Formal definition of
the symbolic product state model.
The let* operator corresponds to
the bind operation in the symbolic
execution monad as defined in
Definition 6.14 (it exposes the
outcomes)

constructing state models 91

8.2 Exclusive ownership

We now present a state model that is directly inspired by an Iris
construction. The Exc(τ) state model is parametric on a sort τ ⊆ Val ,
and its compositional states capture exclusive ownership of a value of
that sort. For the rest of this chapter, we take a less pedantic approach
and provide fewer details about each construction. All definitions and
proofs are available in full in Appendix E.

Full state model of values For this explanation, it is worth introducing
the corresponding full state model: the state model of values for the
sort τ , denoted V(τ). Each state in that model is a single value of sort
τ , which can be read or updated using the load and store actions:

type Σ = τ

let load σ = ok (σ, σ)
let store _ σ′ = ok ((), σ′)

V(τ) itself does not capture any notion of ownership. In fact, owner-
ship is a property expressed using composition. In particular, exclusive
ownership of a resource means that two occurrences of that resource may
not be composed since only one occurrence may exist simultaneously.

Exclusive compositional state model This is precisely how the exclu-
sive state model is defined. Its state fragments are defined as either
a value of sort τ or the special missing value ⊥: type Σ = τ | ⊥. Its
composition is defined such that a state that owns a value may only be
composed with a state that does not own one:

σ • σ′ =

⎧⎪⎪⎨⎪⎪⎩
σ if σ′ = ⊥
σ′ if σ = ⊥
undefined otherwise

Loading and storing the value requires its ownership. Therefore, the
compositional load actions is defined as follows, yielding a missing
outcome when the state is ⊥. The store action is similar and elided.

let load σ⊥ =
match σ⊥ with
| ⊥ → miss (MissingValue, σ)
| σ → ok (σ, σ)

It can be trivially checked that this definition is m-sound with respect
to the full state model of values V(τ), using equality for the relation
|=c.

Core predicate We define a unique core predicate Exc, with no in-
parameter and a single out-parameter corresponding to the value of
the state.

σ |= ⟨Exc⟩(; v)⇔ σ = v

The corresponding producer and consumer are straightforwardly de-
fined such that consuming yields a missing error if the state does not
own a value and otherwise removes and returns it. The producer van-

92 gillian

ishes if the value is already owned, as the composition is undefined.

let consume_cell σ =
match σ with
| ⊥ → miss (MissingState, σ)
| σ → ok (σ, ⊥)

let produce_cell σ v =
match σ with
| ⊥ → return v
| _ → vanish

Symbolic state model The symbolic exclusive state model is straight-
forwardly obtained by lifting the concrete implementation. It is only
worth noting that the ‘optional emptiness’ is not made symbolic. In-
stead, the set of symbolic states is defined as type Σ = τ | ⊥. This
permits efficient OCaml-native pattern-matching, and no solver has to
be queried to determine if a value is missing.

Applications The exclusive state model has little applicability on its
own. It is only designed to be composed with other state models. For
example, a simplified linear heap can be obtained by using the exclusive
state model as the codomain of a partial finite map transformer, defined
later in §8.5.

8.3 Agreement state model

The agreement state model, also directly inspired by an Iris construction,
allows for immutable sharing of a value. Akin to the exclusive state
model, the agreement state model is parametric on a sort τ and is EX-
sound with respect to the full state model of values V(τ). Its states are
values of τ or ⊥, as in the exclusive state model, but the composition
operator differs. Two non-missing agreement states can be composed
together as long as they share the same value:

σ • σ′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σ if σ′ = ⊥
σ′ if σ = ⊥
σ if σ = σ′

undefined otherwise

This definition forms a valid partial commutative monoid but forbids
implementing a store operation, as it would not be frame preserving.
Therefore, the agreement state model only comes with a load action.

It can also be trivially checked that this definition is m-sound with
respect to the full state model of values V(τ), using equality for the
relation |=c.

Core predicate The agreement state model has a single core predicate
called Agree. Its satisfiability relation is the same as the Exc core
predicate:

σ |= ⟨Agree⟩(; v)⇔ σ = v

However, since composition is defined differently, the producer and
consumer functions behave differently. In particular, the producer is
idempotent, while the consumer does not modify the state. These two
properties are shared with the producer and consumer of all persis-
tent core predicates, which are the core predicates that can be freely
duplicated.

constructing state models 93

let consume σ Agree [] =
match σ with
| ⊥ → miss (MissingState, σ)
| σ → ok (σ, σ)

let produce σ Agree [v] =
match σ with
| ⊥ → return v

| σ →
let* () = assume (σ = v) in
return σ

8.4 Fractional state model

Fractional permissions3 are widely used in separation logic as a com- 3 Bornat et al., “Permission ac-
counting in separation logic”, 2005
[Bor+05]

promise between exclusive ownership and read-only sharing. At the
core is the idea that one can own a fraction 0 < q ≤ 1 of a resource.
Anyone who owns a fraction of the resource can read the value, but
only the owner of the full resource (q = 1) can modify it.

State fragments in the fractional state models are then paris of a
value of sort τ and a fraction 0 < q ≤ 1, or ⊥:
type Σ = (τ × (0, 1])⊥

let load σ =
match σ with
| ⊥ → miss (MissingState, σ)
| (v, q) → ok (v, (v, q))

let store σ v =
match σ with
| ⊥ → miss (MissingState, σ)
| (v′, q) →
if q = 1 then ok ((), (v, 1))
else miss ((MissingFrac, 1-q), σ)

Composition is defined by adding the fractions together if the values
are the same and the sum is less than or equal to 1:

σ • ⊥ = σ

⊥ • σ = σ

(v, q) • (v′, q′) = (v, q + q′) if v = v′ and q + q′ ≤ 1

undefined otherwise

Core predicate The fractional state model has a unique core predicate
with one in-parameter for the fraction and one out-parameter for the
value. Its satisfiability relation is defined straightforwardly as follows,
while its producer and consumer are elided as they simply follow the
definition of composition.

(v, q) |= ⟨Frac⟩(q; v)

Symbolic fractional state model One challenge arises from imple-
menting a symbolic fraction state model: solvers do not generally
support symbolic values of sort (0, 1]. To enable support for symbolic
fractions, the type of symbolic states is instead defined as type Σ

= (τ × R)⊥, where the fraction is a real number. Separately, actions,
producer and consumer must enforce the additional well-formedness
constraint Wf ((v, q)) = 0 < q ≤ 1. To exemplify, we provide the
definition of the symbolic producer for the Frac core predicate. First,
nothing is produced if the core predicate is invalid and specifies a
value outside the valid range. Then, if the state already owns a value,
fractions are added if their sum is in the required range and if the
values agree.

94 gillian

let produce σ Frac [q] [v] =
let* () = assume (0 < q ≤ 1) in
match σ with
| ⊥ → ok (v, q)
| (v′, q′) →
let* () = assume (v = v′ ∧ q + q′ ≤ 1) in

ok (v, q + q′)

Comparison with Iris Iris offers a resource algebra called Frac, which
only contains the fraction part of our pairs, that is, an element of (0, 1].
An equivalent of our fractional state model can then be implemented
in Iris as Frac × Ag(τ). A similar construction in Gillian would yield a
valid state model with the same correctness properties as ours.

However, doing so would introduce two core predicates instead of
one: one for the fraction and one for value. While this could be hidden
behind syntactic sugar, calling two producers and consumers instead of
one at each pair’s occurrence could impact performances. In practice,
fractions are often used in conjunction with the agreement algebra, and
defining a unique state model that captures both is more convenient.

8.5 Partial finite maps

The partial finite map transformer is another fundamental building
block for defining state models. All real state models ever defined using
Gillian (those of Wisl, Gillian-JS, Gillian-C and Gillian-Rust) contain
at least one partial map.

The partial map transformer is parametric on an indexing sort
I ⊆ Val , and a codomain state model S, and its set of full states are
partial finite maps of the form type Σ = I

fin−−⇀ S.Σ. For example, the
linear heap4 is instantiated using natural numbers N as indexing sort 4 We simplify and ignore the fact

that cells can be freed. The Freeable
transformer is introduced in the next
section.

and exclusive ownership Exc(Val) as codomain.
All actions of the codomain state model apply to the partial map.

They receive an additional parameter corresponding to the index, and
action evaluation simply applies the codomain’s action evaluation to
the value at the corresponding index in the map:

let eval_action α σ (i::r) =
match σ(i) with
| None → error (InvalidAccess, σ)
| Some σc →
let* (v, σ′

c) = S.eval_action α σc r in
ok (v, σ [i← σ′

c])

Compositional states are defined as partial maps and from the index
to the compositional codomain: type Σ = I

fin−−⇀ S.Σ.
Recall that two linear heaps are composed using a disjoint union of

the two maps. The general case is less straightforward, as the decision
of how to compose resources at the same index is delegated to the
codomain:

σ1 • σ2 = λi.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σ(i) if i /∈ dom(σ′)

σ′(i) if i /∈ dom(σ)

σ(i) • σ′(i) if i ∈ dom(σ) ∩ dom(σ′) ∧ σ(i) # σ′(i)

undefined otherwise

constructing state models 95

Similar to actions, all core predicates from the codomain can be
used to characterise the partial map by receiving an additional in-
parameter for the index. For example, in the case of the linear heap
where the codomain is Exc(Val), the ⟨Exc⟩(; v) core predicate is lifted
to ⟨Exc⟩(i; v), which we have been calling PointsTo until now.

The producer and consumer of the compositional state model are
defined in the expected way and need not be detailed here.

Non-unicity of observably equivalent states and optimisation While
the construction presented so far is correct, it potentially introduces
multiple representations of the same information, which is a source of
complexity. For instance, take the linear heap where the codomain is
Exc(Val). Because ⊥ is a valid state in the exclusive state model, the
linear heap could contain a binding i ↦→ ⊥. In effect, such a binding is
equivalent to the absence of a binding.

This phenomenon can lead to performance issues during symbolic
execution. Remember from §6.8.2 that symbolic operations in the
partial map must perform access by iterating over all bindings in the
map. Each step of the iteration may cause a satisfiability or entailment
check, which can be expensive. The presence of empty bindings in the
map leads to unnecessary iterations.

Thankfully, this can be fixed by checking if the resulting state is the
0 of the co-domain if it returns true and removing the empty binding
when detected.

In turn, the symbolic consumer can be updated to remove empty
bindings from the map when detected:
let consume σ δ v⃗i =
match v⃗i with
| i :: v⃗′i → (

match σ(i) with
| Some σc →
let* σ′

c = S.consume σc δ v⃗′i in
if σ′

c = S.0 then ok (σ \ i)
else ok σ [i← σ′

c]
| None → miss (MissingBinding, σ)

| _ → lfail (InvalidAccess, σ)
)

8.6 Freeable state model

The freeable state model transformer Freeable(S) adds the ability to
dispose of resources to the parameter state model S. For example, the
linear heap defined in earlier chapters maps addresses to memory cells,
and each cell may be freed using the free action. Once a cell is freed,
it cannot be manipulated further.

State fragments of the compositional state model Freeable(S) are
either a state fragment of S, or the special freed state ∅:
type Σ = S.Σ | ∅

This special freed state is incompatible with any state fragment of S,
except for 0:

∅ • σ =

⎧⎨⎩∅ if σ = 0

undefined otherwise

96 gillian

All actions of S can be used on the freeable state model if the state
is not freed. It is also possible to perform a free as long as the current
state is exclusively owned, explained below.
module Freeable (S) = struct

type Σ = S of S.Σ | ∅
let 0 = S S.0

type A = A of S.A | Free

let free σ =
match σ with
| ∅ → error (DoubleFree, σ)
| S σ →

if is_exclusively_owned σ then ok ((), ∅)
else miss (MissingResource, σ)

let eval_action α σ v⃗ =
match α with
| A α → (
match σ with
| ∅ → error (UseAfterFree, σ)
| S σ →
let* (v, σ′) = S.eval_action α σ v⃗ in
ok (v, S σ′)

)
| Free → free σ

(* ... *)
end

Exclusive ownership means that no frame may interfere with the
state that is being freed:

is_exclusively_owned σ = ∀σ′. σ′ ̸= 0 =⇒ ¬σ # σ′

For instance, using the fractional state model, one needs to own a
fraction q = 1 of the resource to be able to free it. Similarly, in real-
world languages such as C and Rust, one can only free an entire memory
block at once; therefore, one must own the entirety of the block before
freeing it. Without this additional condition, the free action would fail
to satisfy Frame subtraction.

Comparison with Iris: one-shot RA Iris has a similar construction,
called the one-shot algebra. However, it differs from Freeable in several
ways. First, in Iris, the one-shot algebra can be derived from a sum
construction, which does not exist in the current version of Gillian.
Second, in Iris, the notion of exclusive ownership is slightly simpler
and does not have the pre-condition σ′ ̸= 0. These two differences are
due to the definition of resource algebras in Iris, which is more flexible
than that of PCMs and does not require a 0 element, but a partial core
function5. This choice in Iris’s design is explicitly motivated by the 5 Jung et al., “Iris from the ground

up: A modular foundation for higher-
order concurrent separation logic”,
2018 [Jun+18]

ability to define the sum construction, which is impossible in Gillian.
Finally, in Iris, the freed resource is captured by an agreement

algebra instead of exclusive ownership: OneShot = Frac + Ag({∅}).
This implies that, in Iris, ∅ • ∅ = ∅, while it is undefined in Gillian.
Interestingly, this definition of composition is incompatible with under-
approximate reasoning. In particular, it breaks the Frame addition
requirement. To understand why, consider the following specification

constructing state models 97

of the free action:

{ ⟨Frac⟩(q; v) } Free() { ⟨Freed⟩(;) }

Applying the frame rule of separation logic to this specification and
adding the frame ⟨Freed⟩(;) on both sides, we obtain:

{ ⟨Frac⟩(q; v) ∗ ⟨Freed⟩(;) } Free() { ⟨Freed⟩(;) ∗ ⟨Freed⟩(;) }

The pre-condition is now false, as it is impossible to own a fraction
of a resource while the resource is freed, but the post-condition is not
according to the rules of the agreement resource algebra. Therefore,
this specification is now equivalent to:

{ False } Free() { ⟨Freed⟩(;) }

While the above specification is sound in SL, the same reasoning is
unsound in ISL since not all states satisfying the post-condition can be
reached from the pre-condition.
Iris6 sums and UX reasoning: More generally, Iris updates that transfer 6 This note is intended for readers

familiar with Iris.the element from one variant to the other require a different property
depending on the approximation mode. In the current Iris, which was
designed for OX reasoning, the source element must be fully owned
to ensure that (a version of) Frame subtraction holds. Conversely,
if there was a UX Iris, where Frame addition must hold, the target
element would need to be exclusively owned instead of the source
element. Since an element of the agreement element model can never
be exclusively owned, using the agreement algebra to capture freed
elements is incompatible with UX reasoning.

8.7 The predicate symbolic transformer

Verification based on separation logic is most often performed by making
extensive use of inductive predicates. All semi-automated verification
tools based on CSE allow users to define inductive predicates and
use them in specifications. Usually, symbolic states maintain a list
of closed predicates, which can be unfolded and folded manually by
the user. In this section, we propose a general way of extending a
symbolic state model with support for inductive predicates. Before
describing this extension, we start by providing a simple example of
such a predicate. Then, we justify the soundness of this approach by
defining the corresponding compositional state model.

8.7.1 Example and motivation

Example: linked list Consider the linked list predicate, a staple of
the separation logic literature, defined as follows in the linear heap7: 7 Pure assertions such as x = null

are syntactic sugar for ⟨Pure⟩(;x =
null), x ↦→ v for ⟨PointsTo⟩(x; v),
and x ↦→ a, z for x ↦→ a ∗ x+ 1 ↦→ z

list(x, α) ≜ (x = null ∗ α = [])

∨ (∃a, z, β. x ↦→ a, z ∗ list(z, β) ∗ α = a : β)

The above predicate declares two possible cases separated by a dis-
junction. Either the pointer x is null and the list content α is empty,
or the pointer x points to two cells containing value v and pointer z,

98 gillian

respectively. In the latter case, z is also the beginning of a list, as
specified by the recursive call to the list predicate, and the content of
the list α is obtained by consing v to the content β of the list starting
at z.

Encoding in the symbolic world Such inductive predicates raise a
challenge, as they are difficult to encode in a symbolic state. Recall that
symbolic linear heap state σ = (h, d⊥) comprises a partial map from
addresses to values h and an optional domain set d⊥. All concretisations
of a linear heap have a fixed number of memory cells. In contrast, the
list predicate can represent lists of symbolic lengths, which would have
a symbolic number of cells. Therefore, the list predicate cannot be
directly encoded in the symbolic linear heap.

The solution is to extend the state with a list of closed predicates, of
the form ρ(v⃗), where ρ is the name of the predicate and the symbolic
values v⃗ are its parameters. The symbolic linear heap state σ =

(h, d⊥, p) becomes a triple comprising the partial map, the domain set,
and the list of closed predicates p ∈ Str × Val list called predicate
state.

Take, for instance, the specification of a simple list-length function
llen:

{ list(x, α) } function llen(x) { Ok : r. list(x, α) ∗ r = |α| }

Producing its pre-condition using the substitution θ = [x ↦→ x, α ↦→ α]

would yield a symbolic state of the form σ = (∅,⊥, [list(x, α)]).

Unfolding and folding At some point, the function would need to
dereference the pointer x to access the tail of the list and compute its
length. Pointer dereference will be performed by the load action of the
linear heap. However, this action requires the cell to be present in the
map, which is currently empty. To successfully perform the dereference,
we need to transfer some of the resources from the predicate state to
the heap map.

This is the role of the unfold command, which removes a predicate
from the predicate state and replaces it with its definition. In the case
of the list predicate, unfolding would result in two symbolic states, each
corresponding to a definition of the list predicate. The corresponding
symbolic process is depicted in Figure 8.4. After unfolding, in the non-
null case, it is now possible to access the tail pointer and recursively
compute its length.

(∅,⊥, [list(x, α)])

⟨Ok : ((), (∅,⊥, [])) | x = null ∧ α = []⟩ ⟨Ok : ((), ([x ↦→ a, x+ 1 ↦→ z],⊥, [list(z, β)]) | α = a : β⟩
Figure 8.4: Result of unfolding the
list predicate, z, a and β are fresh
symbolic variables.Folding is the opposite operation, which removes the definition of a

predicate from the state and replaces it with the predicate itself. In the
list-length example, it is needed when reaching the end of the function,

constructing state models 99

and the post-condition expects the list predicate to be present in the
state again.

8.7.2 Predicate state as a state model transformer

The idea of a predicate state manipulated through unfolding and folding
is not new and has been used in VeriFast for over a decade and later in
Viper, JaVerT 2.0 and Gillian. Here, we propose a novel formalisation
and implementation as a transformer that enables the use of inductive
predicates in any state model. The transformer yields state models that
can then be seamlessly used with our framework without modifying the
symbolic engine. In the current implementation of Gillian, predicates
are still part of the core framework, though we intend to extract them
in immediate future work.

Extending state models with user-defined predicates Let S be a
symbolic state model, and let P be a set of predicate definitions of the
form:

⟨ρ⟩(x⃗i; x⃗o) ≜ {Q1 ∨ · · · ∨Qn}

where x⃗i and x⃗o are the in- and out-parameters of the predicate, and
Q1, . . . , Qn ∈ Asrt are the case definitions that must only make use
of core predciates δ ∈ S.∆ or user-defined predicates ρ that have their
definitions in P. For example, the list predicate in the linear heap
would receive the address x as an in-parameter and the sequence α as
an out-parameter.

We define a new state model transformer Pred(S,P) that extends
S with support for the predicates defined in P. Its set of states is a
pair comprising a symbolic state from S and a list of closed predicates
with their name in P. Each closed predicate carries a list of its in-
and out-parameters. User-defined predicates are then used as core
predicates of the extended state model:

type Σ = S.Σ× (P.names×Val list×Val list) list

type ∆ = | C of S.∆ | U of P.names

Producer and consumer Producing or consuming a core predicate
from the parameter state model delegates the task to its producer and
consumer, while a user-defined predicate is simply added or removed
from the list of closed predicates.

Three important notes must be made. First, the producer does not
enforce any well-formedness invariant. For example, producing a closed
predicate with definition ⟨F⟩(;) ≜ False would yield an unfeasible state
with a satisfiable path condition. Hence, the predicate state model is
incompatible with UX analysis, as it cannot check for the satisfiability
of the produced states.

Second, the function that removes a predicate from the list of closed
predicates must iterate over the list and identify which predicate to
remove. This operation may branch if several predicates match the
name ρ and the in-parameters. As discussed in §6.8.2, where a similar
phenomenon occurs, it is also sound to perform entailment checks

100 gillian

let produce δ (σ, p) v⃗i v⃗o =
match δ with
| C δ′ →
let* σ′ =

σ.produce δ′ σ v⃗i v⃗o
in
return (σ′, p)

| U ρ →
return (σ, (ρ, v⃗i, v⃗o) :: p)

let rec remove_pred ρ v⃗i p =
match p with
| [] → Abort (PredNotFound, p)

| (ρ′, v⃗
′
i, v⃗o) :: p’ when ρ = ρ′ →

if%sat v⃗i = v⃗
′
i then ok (v⃗o, p′)

else (ρ′, v⃗
′
i, v⃗o) :: remove_pred ρ v⃗i p′

| (ρ′, v⃗
′
i, v⃗o) :: p’ when ρ ̸= ρ′ →

(ρ′, v⃗
′
i, v⃗o) :: remove_pred ρ v⃗i p′

let consume δ (σ, p) v⃗i =
match δ with
| C δ′ →
let* (v⃗o, σ′) =
with_abort_instead_of_miss
(σ.consume δ′ σ v⃗)

in
ok (v⃗o, (σ′, p))

| U ρ →
let* (v⃗o, p′) =
remove_pred ρ v⃗i p

in

ok (v⃗o, (σ, p′))

Figure 8.5: Producer and consumer
for the predicate state model.

instead of sat checks, preventing branching and gaining predictability
at the cost of some automation. This is the choice made by VeriFast.

Finally, the consumer never returns a Miss outcome, as it cannot
accurately identify if a resource is missing. It explicitly converts all Miss
outcomes to Abort when calling the consumer of S and also aborts when
a user-defined predicate cannot be found in the list. That is because
a resource could be hidden inside another user-defined predicate or
would need to be folded. This information loss deteriorates the quality
of error messages, which is, unfortunately, a necessary side-effect of the
expressivity gained.

Unfolding and folding Unfold and fold are then implemented as
actions in the predicate state model:
type A = S.A | Unfold of P.names | Fold of P.names

Unfold receives the in-parameters of the predicate and removes the
corresponding predicate from the state before producing its definitions.
The fold operation does the opposite, and consumes the first definition
of the predicate that matches the state, and adds its closed form to the
state. For conciseness, we elide their definitions.

8.7.3 Recovery mechanisms and automation

Having to unfold and fold predicates manually is a source of complexity
for the user. Thankfully, it is possible to implement error-directed
heuristics to fold and unfold predicates automatically. In particular,
if a core predicate ⟨δ⟩(v⃗i; v⃗o) is declared missing by an action of the
parameter state model, the action evaluation function of the predicate
state model can find a user-defined predicate closed in the state that
shares similar parameters8 and automatically unfold it. Similarly, when

8 In Gillian, actions and consumers
return a list of recovery values when
failing. These values are used to
decide what predicates to unfold
according to a set of pre-defined
heuristics. These heuristcs are
outside the scope of the current
presentation, but are not overly
complex.

failing to consume a user-defined predicate, the engine may decide to
fold it automatically and try to consume it again.

constructing state models 101

This is the approach taken by Gillian. In the list-length algorithm
example, the engine would automatically unfold the list predicate when
the cell is dereferenced and fold it back when it reaches the post-
condition. In fact, Gillian verifies the list-length algorithm entirely
automatically and requires no manual intervention.

In Part III, we propose an extension of the predicate transformer to
model borrows in Rust. These same heuristics are reused to automate
reasoning about mutable borrows for the first time.

8.8 The mutable store, and where it goes wrong

While SIGIL does not have a mutable store, it is possible to define a
state model that provides one. In the separation logic literature9, the 9 Reynolds, “Separation Logic: A

Logic for Shared Mutable Data
Structures”, 2002 [Rey02]; Raad
et al., “Local Reasoning About the
Presence of Bugs: Incorrectness
Separation Logic”, 2020 [Raa+20];
and Maksimović et al., “Exact
Separation Logic: Towards Bridging
the Gap Between Verification and
Bug-Finding”, 2023 [Mak+23]

mutable store is treated as pure in the assertion language, such that
the assertion x = v ∗ x = v′ where x is satisfied by a store [x ↦→ v′′] if
and only if v = v′ = v′′.

Using the constructions provided above, the mutable store can be
defined as a partial map from strings to values, where values are
duplicable: PMap(Str ,Ag(Val)). Unfortunately, as mentioned in the
section about the agreement state model, mutating values is not frame
preserving. This is precisely why using a variable store induces a
side condition in the “traditional” frame rule of separation logic. This
condition specifies that the frame rule holds only if the frame does not
contain any program variable that is modified by the expression:

Trad-Frame
{ P } e { Q }

{ P ∗R } e { Q ∗R }
mod(e) ∩ fv(R) = ∅

Additional effort could be made to accommodate this side condition
in a general manner by introducing a similar side condition to Frame
addition and Frame subtraction and allowing state models to declare
how to interact with this side condition. However, experience with
Gillian shows that the mutable store is a poor model of real-world
languages. In systems languages like C and Rust, variables are address-
able and hence cannot be kept in a simple mutable store, while in a
dynamic language such as JavaScript, the heap is used to emulate an
imperfect store10. 10 Gardner et al., “Towards a pro-

gram logic for JavaScript”, 2012
[GMS12]; and Naudziuniene, “An
Infrastructure for Tractable Verifica-
tion of JavaScript Programs”, 2018
[Nau18]

In the current implementation of Gillian, the GIL intermediate
language provides a variable store out of the box. Gillian is then in
charge of checking that the side condition of the frame rule is never
broken. However, this is a source of complexity that brings little benefit.

8.9 Implementation and code reuse

The state model transformers presented in this chapter have been
implemented in Gillian and are used to define the symbolic state
models of Wisl, JavaScript, and C11. While transformers play a key 11 For Wisl and JavaScript, see next

chapter; for C, see Part II.role modularise and simplifying the soundness proofs of state models
in our formalisation, their implementation demonstrates that they also
significantly streamline the implementation process.

102 gillian

Notably, the Wisl memory model, which previously required 780 lines
of code, has been reduced to just 38 lines with transformers. Similarly,
the JavaScript state model now consists of 237 lines of code compared
to its original 1238. This dramatic reduction highlights the impact of
transformers in reducing complexity and improving maintainability.

Beyond code simplification, systematic component reuse enhances re-
liability and performance. Shared components undergo more thorough
scrutiny and testing, and allow optimisations to be ported effortlessly ac-
cross instantiations. For instance, the new JavaScript state model built
using transformers is about 4% faster than its monolithic predecessor.
This improvement stems from a small optimisation originally intro-
duced in the C memory model, which was seamlessly integrated into
the partial map transformer and automatically applied to JavaScript
without additional effort.

Chapter 9

Applications: Wisl and JavaScript

While working on the existing instantiations of Gillian, we carefully
considered every choice available in the design and implementation of
state models compatible with Gillian, as well as the state model API
of Gillian itself. The core insights from this process have already been
distilled in the earlier pages of this manuscript. While there remain
many observations and novelties in Gillian-C and Gillian-Rust, the state
models of Wisl and Gillian-JS have, in an anticlimactic twist, become
trivial to describe, thus not meriting separate parts. This chapter
outlines both of them as constructions derived from the components
introduced in the preceding chapter.

9.1 Wisl: While language for separation logic

Figure 9.1: The Wisl logo, designed
by Valentin Magnat.

The initial version of Wisl (pronounced “weasel”) was developed as
a front-end for JaVerT 2.0. The aim was to design a tool to help
students learn about semi-automatic verification using separation logic,
using the concepts taught in class. This led to the creation of Wisl,
a language resembling the small while language from John Reynolds’
seminal paper on separation logic1, which uses a linear heap. Unlike 1 Reynolds, “Separation Logic: A

Logic for Shared Mutable Data
Structures”, 2002 [Rey02]

Gillian, JaVerT 2.0 was not parametric on the state model, necessitating
compromises for Wisl to fit a JavaScript-like memory model, notably
omitting pointer arithmetic in favour of static objects.

Following its initial creation, Wisl was adapted as a Gillian instanti-
ation the subsequent year, recovering pointer arithmetic and becoming
a hub for experimentation. Throughout the years, it enabled us, the
Gillian developers, to delve into the effects of various design choices
on memory models, significantly contributing to the insights shared in
this manuscript.

9.1.1 Overview of the Wisl memory model

At its core, the heap model of Wisl is a (substantially) simplified version
of the C heap. The design of the language’s memory management is
such that the expression new(n) allocates n cells of memory (these cells
form an object) and returns a pointer to the first cell, mimicking the
behaviour of malloc function in C. Furthermore, objects are considered to
exist within separate spaces in memory; pointer arithmetic on a pointer
into an object may not yield a pointer to another object. Finally, the
statement free(p) simulates C’s free function by requiring the pointer
p obtained from a new statement and deallocating the entire object at
once. Unlike C, however, Wisl does not forbid reading uninitialised
memory and instead zero-initialises every cell at allocation time.

This memory model is inspired by the CompCert memory model2,3,

2 Leroy et al., “The CompCert
Memory Model, Version 2”, 2012
[Ler+12]
3 Of course, the CompCert memory
model is much more complex, as
it proposes additional actions to
deal with machine integers and
keeps track of access permissions,
uninitialised memory etc. Gillian-C,
presented in Part II, uses a state
model that models CompCert much
more accurately.

104 gillian

in that it is a map from object locations to objects, where an object is
a list of values (bytes in CompCert).

function main() {
x := new(4);
y := new(2);
[x + 1] := 42;
free(y);

free(x + 1); // Errors
}

y ∅

x

0

0

1

42

2

0

3

0

4

x + 1

The above figure presents a simple Wisl program which allocates
two objects of size 2 and 4 and stores the pointers to their first cell in
variables x and y. Then, the program writes 42 in the second cell of
the object at address x and frees the first object. Finally, the program
attempts to free the second object but provides an invalid pointer – the
pointer to the second cell instead of the pointer received from allocation
– and the program ends in an error. A diagram of the memory state
between the two free statements is presented next to the program’s
code.

To support all of the features, we define the following heap model
for Wisl:

PMap(Loc,Freeable(List(Val)))

where the List state model captures the representation of the objects.
We now describe this new construction in more detail.

9.1.2 The List state model

The Wisl heap model relies on a new List(τ) state model to represent
the list of values that constitute each object. As expected, a full state
in this state model is a list of values of type τ . Loading and storing a
value at index i in the list checks that the i is within the list bound
before operating.

Defining state fragments to be lists is impossible when, for example,
the size of the list is unknown. Instead, we define state fragments as
pairs (b, n⊥) that comprise a partial finite map b : N fin−−⇀ τ (b stands
for block) from integers to values of the sort τ , and an optional integer
n⊥, called bound, corresponding to the size of the list. The bound,
if not ⊥, specifies that every index greater or equal to is known to
be out-of-bounds. This is a requirement for the Freeable state model
transformer: without the bound, it is impossible to know when a block
is exclusively owned.

In Figure 9.2, we give a formal definition of the compositional state
model, omitting the store action, as it is defined similarly to the load
action.

Wisl symbolic heap and limitation The Wisl symbolic heap also
uses partial maps, which are accessed similarly to the symbolic partial
map state model. This symbolic heap model is sufficient for analysing

applications: wisl and javascript 105

module List (τ : T) = struct

type Σ =

{︃
(b, n⊥) ∈ (N fin−−⇀ τ)× N⊥ | dom(b) ⊆ [0, n⊥)

}︃

let load (b, n⊥) i =
match b(i), n⊥ with
| v, _ → ok (v, (b, n⊥))
| ⊥, n when i ≥ n → error (OutOfBounds, (b, n⊥))
| _ → miss (MissingCell, (b, n⊥))

let new n = ([i ↦→ 0|n−1
i=0], n)

let is_exclusively_owned (b, n⊥) =
match n⊥ with
| ⊥ → false
| n → (dom(b) = [0, n))

(* ... *)
end

Figure 9.2: Excerpt from the defini-
tion of the List state model

many simple examples used in teaching (e.g., doubly-linked lists, trees).
However, it also has a strong limitation: it does not allow for the
representation of lists of a symbolic size. Since each block is represented
as a partial finite map, allocating a block without knowing a concrete
number of bindings to insert into the map is impossible. We do not
aim at lifting this limitation in the context of Wisl, as we prefer the
state model to remain simple and easily understandable by students.
However, this limitation is lifted in the context of Gillian-C, which is
described in the next part of this manuscript.

9.2 Gillian-JS

Gillian was initially developed by abstracting the heap module specific
to JavaScript from JaVerT 2.0 and making the core engine operate as
a functor on that module. The state model of JaVerT 2.0, and later
Gillian-JS, is extensively described in published papers4. Here, we 4 Fragoso Santos et al., “JaVerT 2.0:

compositional symbolic execution
for JavaScript”, 2019 [Fra+19];
Fragoso Santos et al., “Gillian, part
I: a multi-language platform for
symbolic execution”, 2020 [Fra+20];
and Maksimović et al., “Gillian,
Part II: Real-World Verification for
JavaScript and C”, 2021 [Mak+21]

propose a novel, equivalent definition of the Gillian-JS state model in
terms of state model constructions.

9.2.1 Overview of the Gillian-JS memory model

Using state model transformers presented in the previous chapter, it is
possible to define the Gillian-JS memory model as:

PMap(Loc,DynPMap(Str ,Exc(Val)))× PMap(Loc,Ag(Loc))

where each state is composed of two components. First, the heap is
a partial map from location to dynamic objects. Each object is a
dynamic partial map (described shortly) from strings to values. The
string indexes represent property names in JavaScript, which can be
dynamically computed at execution time.

The second component of the state is the metadata table that effi-
ciently captures each object’s internal properties, providing a significant
performance boost when analysing compiled JS code. For each object

106 gillian

location l, its metadata m(l) = lm is the location of an object contain-
ing properties that are used internally by the JavaScript semantics and
cannot be directly manipulated by the developer. Since the metadata
of each object is immutable, it is captured using the agreement state
model, where the resource is duplicable.

The metadata table in the JaVerT 2.0 and Gillian-JS implementa-
tions has always been duplicable, facilitating compositional reasoning
without having to transfer ownership of the table to callees. However,
the corresponding papers described the resource as exclusively owned to
avoid cluttering the presentation. Using our state model constructions,
defining the metadata table becomes trivial.

9.2.2 Dynamic partial maps

d

dom(obj)
p1

p2

p3

Figure 9.3: Representation of the
set of heap addresses, distinguishing
the cases p1 ∈ dom(obj), p2 ∈ d and
p3 /∈ d, when d ̸= ⊥.

Dynamic partial maps are defined identically to normal partial maps,
apart from how “unallocated” cells are handled. In a (full) static partial
map, accessing an index not in the map yields an erroneous execution.
In JavaScript, however, accessing a property that has not yet been
added to the object is allowed and yields a special undefined value.

Without care, transfering this behaviour to the compositional world
would break frame-preservation. For instance, loading property "p"

in an empty object would successfuly yield the value undefined, while
loading the same property in the object [p ↦→ 1] would yield the value
1.

This is a well-known problem in JavaScript verification, which was
first noticed in 20125. The solution, in the context of compositional 5 Gardner et al., “Towards a program

logic for JavaScript”, 2012 [GMS12]symbolic execution, is provided by Naudžiūnienė in her PhD thesis6,
6 Naudziuniene, “An Infrastruc-
ture for Tractable Verification of
JavaScript Programs”, 2018 [Nau18]

and later in the first version of JaVerT developed by Fragoso Santos et
al.7. It consists in enhancing the state with a domain set, which is a

7 Fragoso Santos et al., “JaVerT”,
2017 [Fra+17]

symbolic set which captures all addresses (in the case of JS, properties)
which may be in the object. All variables outside the domain set are
owned and known to not be in the object. For instance, creating a new
object would yield the empty map and the empty domain set, as the
object is known to contain no properties. Furthermore, the pair (obj, d)
must satisfy the heap-domain invariant : dom(obj) ⊆ d.

Figure 9.3 shows a representation of the set of property names,
distinguishing between properties that in the obeject (in blue) and
properties that are known to not be in the object (in red). The region
or properties that are in the domain but not in the object, in white,
are missing and accessing them yields a Miss outcome.

Furthermore, note that the domain set is optional, and can be ⊥.
In this case, it does not capture any ownership information, and the
heap-domain invariant need not be enforced. Any property not in the
object’s map is considered missing, as shown in Figure 9.4.

dom(obj)
p1

p2

p3

Figure 9.4: Similar to Figure 9.3, but
with d = ⊥

To be frame preserving, the load action of the dynamic partial maps
is then defined as follows:

let load (obj, d⊥) prop =
match obj(prop), d⊥ with
| Some v, _ → ok (v, (obj, d⊥))
| None, d when prop /∈ d → ok (undefined, (obj, d⊥))
| None, _ → miss (MissingProp, (obj, d⊥))

applications: wisl and javascript 107

9.2.3 Evaluation

A detailed evaluation of Gillian-JS is outside the scope of this manuscript,
and we only provide a brief overview of the results to show the real-
world applicability of a JavaScript analyser based on Gillian. First,
Gillian-JS is as expressive as JaVerT 2.08 and can reproduce all the

8 Fragoso Santos et al., “JaVerT 2.0:
compositional symbolic execution for
JavaScript”, 2019 [Fra+19]

results reported in the JaVerT 2.0 paper, apart from those related to
bi-abduction9. In addition, Gillian-JS was used to verify the header

9 When Gillian’s bi-abduction was
migrated to UX, the JS fixing inter-
face was not updated accordingly.
This is not a limitation, but simply
work that remains to be done.

deserialisation module of the AWS Encryption SDK library10, a larger 10 The same module was also verified
using Gillian-C, and the correspond-
ing results are presented in §14.2

case study than ever performed with JaVerT 2.0. This case study
confirms that migration to the parametric Gillian infrastructure did
not restrict the tool’s power.

Chapter 10

Related work

In this chapter, we review the work related to Gillian. We explain how
Gillian and the formalisation presented in this manuscript differ from
the work conducted on other CSE verification (§10.1) and bi-abduction
(§10.2) tools. We then address other parametric approaches to analysis
(§10.3), as well as tools that support both UX and OX (§10.4), two
critical features of Gillian. Finally, we describe work that takes a
monadic approach to symbolic execution (§10.5) and compare it to our
approach in Chapter 6.

10.1 Compositional symbolic execution tools for verification

Immediately related work includes all tools that perform compositional
verification using symbolic execution. We first discuss the technique’s
inception, followed by VeriFast and Viper, which, alongside Gillian,
represent the main tools in this domain with ongoing active development.
None of the tools presented in this section are parametric or support
whole-program symbolic testing or under-approximate reasoning.

10.1.1 The early days

Compositional symbolic execution was pioneered by the Smallfoot tool1. 1 Berdine et al., “Smallfoot: Modular
Automatic Assertion Checking with
Separation Logic”, 2006 [BCO06]

It was significant as it provided a formalisation of the CSE methodology,
although it lacked a proof of soundness and only worked on a small
toy language. Notably, Smallfoot did not employ an SMT solver.
Instead, it relied on a bespoke inference engine equipped with hard-
coded inductive predicates for reasoning about a few data structures,
such as trees and lists. Smallfoot was later formalised in Coq2, though 2 Appel, “VeriSmall”, 2011 [App11b]

the formalisation does not include critical features such as function
calls using specifications.

Inspired by Smallfoot, jStar3 emerged as the first compositional 3 Distefano et al., “jStar: towards
practical verification for Java”, 2008
[DP08]

symbolic execution tool capable of verifying code written in a real-
world language, namely Java. From jStar, coreStar4 was developed 4 Botinčan et al., “coreStar: the Core

of jStar”, 2011 [Bot+11]to create a generic and reusable intermediate language for reasoning
with separation logic. Despite having several front-ends, coreStar had
a fixed, simple memory model. Like Smallfoot, coreStar required most
of the reasoning to be hard-coded directly into the inference engine
and did not provide a proof of soundness. Nevertheless, coreStar was
the first tool to offer both verification and bi-abduction.

10.1.2 VeriFast

VeriFast5, introduced shortly after jStar, is a tool developed at KU

5 Jacobs et al., “A Quick Tour of
the VeriFast Program Verifier”, 2010
[JSP10]; and Jacobs et al., “VeriFast:
A Powerful, Sound, Predictable,
Fast Verifier for C and Java”, 2011
[Jac+11]

Leuven and can be characterised as the first modern CSE tool. It

110 gillian

pioneered the produce/consume paradigm and employs an SMT solver.
VeriFast can verify C, C++ and Java programs using a simple yet
expressive state model. It has been successfully used to explore novel
techniques for verification using separation logic6. 6 Jacobs et al., “Expressive modular

fine-grained concurrency specifica-
tion”, 2011 [JP11]; Penninckx et al.,
“Sound, Modular and Compositional
Verification of the Input/Output
Behavior of Programs”, 2015 [PJP15];
Agten et al., “Sound Modular Veri-
fication of C Code Executing in an
Unverified Context”, 2015 [AJP15];
and Jung et al., “The future is ours:
prophecy variables in separation
logic”, 2020 [Jun+20]

We believe a large part of the VeriFast behaviour could be adapted
into a state model for Gillian. In particular, VeriFast encodes all re-
sources into a list of memory chunks, analogous to the list of closed
predicates carried by the predicate state model discussed in §8.7. Al-
though VeriFast’s encoding of resources is highly expressive, it limits
automation. However, it is to be noted that enhancing automation
is not a goal of VeriFast. Instead, its design focuses on achieving low
verification times and predictable execution, objectives it meets with
considerable success.

Moreover, VeriFast incorporates several sophisticated features not
currently supported by Gillian’s implementation or the formalisation
proposed in this manuscript. Such features include predicate families,
predicate constructors, and predicate values. While we believe these
features can be implemented within Gillian as state models, further
work is required to demonstrate this feasibility.

Featherweight VeriFast Featherweight VeriFast7 (FVF) is a mech- 7 Jacobs et al., “Featherweight
VeriFast”, 2015 [JVP15]anised formalisation and soundness proof for a simplified version of

VeriFast. To our knowledge, it is the first soundness proof for a compo-
sitional symbolic execution engine.

The proof of soundness of FVF employs an intermediate theoretical
semantics that manipulates concrete values but handles function calls
through specifications. This approach enhances the modularity of its
proof and serves as the principal inspiration for the concrete specifi-
cation semantics introduced in our formalisation. In addition, FVF
distinguishes itself by being entirely mechanised in Coq, providing more
reliable proofs than our pen-and-paper approach.

That said, the scope of FVF is limited compared to our formalisation.
First and foremost, FVF is not parametric. In addition, it uses a con-
crete compositional semantics as the trusted computing base. As such,
it does not establish a link between this compositional semantics and a
real non-compositional semantics. Secondly, FVF does not formalise the
connection between producers, consumers and the satisfiability relation
of an assertion language. Instead, it uses the definition of the consumer
and producer to interpret the core predicates. Consequently, FVF does
not justify using externally-proven specifications or the external use of
specifications proven inside VeriFast. Finally, Gillian’s formalisation
captures under-approximate analysis, and FVF does not.

10.1.3 Viper

Viper8 is an intermediate language for compositional verification devel-

8 Müller et al., “Viper: A Verification
Infrastructure for Permission-Based
Reasoning”, 2016 [MSS16b]

oped at ETH Zurich, and based on a flavour of separation logic called
implicit dynamic frames9 (or IDF). Unlike classic separation logic, IDF

9 Smans et al., “Implicit dynamic
frames”, 2012 [SJP12]; and Smans
et al., “Heap-Dependent Expressions
in Separation Logic”, 2010 [SJP10]

allows for the use of heap-dependent expressions.
Viper has many front-ends, including for Rust10, statically-typed

10 Astrauskas et al., “Leveraging rust
types for modular specification and
verification”, 2019 [Ast+19]

related work 111

Python11, Java12 and Go13. However, Viper makes use of a static 11 Eilers et al., “Nagini: A Static
Verifier for Python”, 2018 [EM18]
12 Blom et al., “The VerCors Tool
Set: Verification of Parallel and
Concurrent Software”, 2017 [Blo+17]
13 Wolf et al., “Gobra: Modular
Specification and Verification of Go
Programs”, 2021 [Wol+21]

object-oriented memory model. As such, it remains unclear whether
it could be used to model dynamic memory models such as that of
JavaScript or untyped Python.

Viper, furthermore, has two back-ends. The first encodes the Viper
program – including the permission-based reasoning – into Boogie14,

14 Leino, “This is Boogie 2”, 2008
[Lei08]

which allows for the generation of verification conditions. The other,
closer to our work, is based on compositional symbolic execution and
has been formalised in Schwerhoff’s thesis15. While this formalisation 15 Schwerhoff, “Advancing Auto-

mated, Permission-Based Program
Verification Using Symbolic Execu-
tion”, 2016 [Sch16]

defines a symbolic semantics for Viper, it does not justify its soundness.
More recently, Zimmerman et al. produced a proof of soundness

for a simplified subset of the symbolic semantics16. This proof covers 16 Zimmerman et al., “Sound Gradual
Verification with Symbolic Execu-
tion”, 2024 [ZDA24]

the soundness of the symbolic execution engine and the verification
algorithm. Its main target is to prove the soundness of a gradual
verification engine, meaning an engine that can work soundly with
only partial specifications (which Gillian does not support). Unlike
ours, however, their work is neither parametric nor supports under-
approximation.

10.1.4 JaVerT 2.0

JaVerT17, or JavaScript Verification Toolchain, was a CSE tool for 17 Naudziuniene, “An Infrastruc-
ture for Tractable Verification of
JavaScript Programs”, 2018 [Nau18]

verifying JavaScript programs developed at Imperial College London.
Its second version, JaVerT 2.018, is the ancestor of Gillian and was 18 Fragoso Santos et al., “JaVerT 2.0:

compositional symbolic execution for
JavaScript”, 2019 [Fra+19]

the first CSE tool to support the three kinds of analysis supported by
Gillian and discussed in Chapter 719.

19 JaVerT 2.0 supports bi-abduction,
though in OX mode, instead of UXGillian was initially developed by abstracting the memory-model

module specific to JavaScript from JaVerT 2.0 and designing the core
engine to operate as a functor on that model. Gillian, therefore,
distinguishes itself from JaVerT 2.0 by taking the non-trivial step of
incorporating parametricity and under-approximate reasoning.

Finally, throughout the development of Gillian, many improvements
have been made to the codebase that enhanced the clarity and mod-
ularity of the code and its runtime performances. Compared to the
benchmark presented in the JaVerT 2.0 paper, Gillian-JS is now two
to three times faster20. These enhancements include for instance, a 20 Fragoso Santos et al., “Gillian,

part I: a multi-language platform for
symbolic execution”, 2020 [Fra+20]

drastically improved encoding of the path condition into Z3, as well as
more efficient matching plans that reduce duplicated work. A detailed
description of these changes is outside the scope of this manuscript.

10.2 Bi-abduction tools

The first tool implementing bi-abduction was Abductor21, an extension 21 Distefano, “Attacking Large
Industrial Code with Bi-abductive
Inference”, 2009 [Dis09]

of SpaceInvader, itself a descendant of Smallfoot. Abductor was able
to show the scalability and applicability of bi-abduction on a fragment
of the C programming language. In addition, it could infer the use
of some inductive predicates (such as lists and trees), yielding more
expressive over-approximate specifications.

Today, the most famous tool making use of bi-abduction is Infer22, 22 Calcagno et al., “Infer: An Auto-
matic Program Verifier for Memory
Safety of C Programs”, 2011 [CD11]

a descendant of Abductor. Infer can perform bi-abduction on Java, C,
C++, and Objective-C programs using a simple intermediate language,

112 gillian

an extension of the Smallfoot intermediate language (SIL). Infer has
been used in industry, inside Meta23, for over ten years. It is part of 23 Distefano et al., “Scaling static

analyses at Facebook”, 2019 [Dis+19]Meta’s code review process and analyses commit diffs during the con-
tinuous integration pipeline. A few years ago, the maintainers of Infer
realised that the over-approximating features of the tool – including
the inference of inductive predicates – led to too many false positives,
which proved detrimental to the review process. This realisation led to
the formalisation of Incorrectness Logic and its separation logic flavour.
In turn, it led to a variant of Infer called Infer:Pulse, which is based
on an under-approximate implementation of bi-abduction24 without 24 Le et al., “Finding real bugs in big

programs with incorrectness logic”,
2022 [Le+22]

inductive predicates. The formalisations of Incorrectness Separation
Logic25 and Pulse, however, make use of the idealised linear heap and 25 Raad et al., “Local Reasoning

About the Presence of Bugs: Incor-
rectness Separation Logic”, 2020
[Raa+20]

do not include a formalisation of function calls.
Other work on bi-abduction includes the body of work about for-

mulating shape analysis as an abstract interpretation26. While this 26 Chang et al., “Relational inductive
shape analysis”, 2008 [CR08]; Illous
et al., “A relational shape abstract
domain”, 2021 [ILR21]; and Nicole
et al., “Lightweight Shape Analysis
Based on Physical Types”, 2022
[NLR22]

work does not formulate shape analysis parametrically, or as a layer
on top of an existing engine, it does describe relational shape analysis,
which can infer specifications that are more expressive than tradi-
tional specifications. For example, the specifications capture whether
a mutation happened, even if it was reversed before the end of the
function. Furthermore, this work addresses the problem of inferring
over-approximate specifications that use inductive predicates, which
exceeds the expressivity/power of our work.

10.3 Parametric frameworks for analysis

We now address the literature on parametric frameworks for analysis
and verification.

10.3.1 Lithium

One of the most relevant works that takes a parametric approach to
analysing several languages is Lithium27. Lithium is a domain-specific 27 Sammler, “Automated and foun-

dational verification of low-level
programs”, 2023 [Sam23]

programming language shallowly embedded in Coq and aims to write
verification tools based on separation logic. To write a verification
tool using Lithium, the tool developer writes rules that each handle
one verification step. Lithium then comes with an interpreter written
in the Ltac tactic language for Coq, allowing automatic proof search.
As such, the tool distinguishes itself by being the first compositional
verification tool that produced foundational proofs; an impressive feat
in our opinion.

Furthermore, Lithium is based on Iris and, as such, enjoys para-
metricity over the resource model. Its assertion language is minimal,
resembling the one presented in §5.1, with the exception that in Lithium,
pure assertions are hard-coded in the assertion language since pure
assertions use Coq’s Prop type. In contrast, our formalisation does not
need a special case for pure assertions.

Lithium has several instantiations, including RefinedC28 and Re-

28 Sammler et al., “RefinedC: au-
tomating the foundational verifica-
tion of C code with refined ownership
types”, 2021 [Sam+21]

finedRust29. There, it has proven its applicability to medium-sized

29 Gäher et al., “RefinedRust: A
Type System for High-Assurance
Verification of Rust Programs”, 2024
[Gäh+24]

(though complex) case studies.

related work 113

However, foundational proofs come at a price. Proofs performed
with Lithium-based tools are slower than those performed by Gillian-
based tools and usually require more annotations30. Furthermore, most 30 More details about this are given

in the related work section of Part II
and Part III

Lithium proofs require writing some Coq code and, therefore, require
more expert knowledge than the CSE tools like Gillian, VeriFast, or
Viper.

10.3.2 Semantic frameworks

Semantic frameworks, such as K31, Ott32, Lem33 and Redex34, provide 31 Ros,u et al., “An overview of the K
semantic framework”, 2010 [RS, 10]
32 Sewell et al., “Ott: effective tool
support for the working semanticist”,
2007 [Sew+07]
33 Mulligan et al., “Lem: reusable
engineering of real-world semantics”,
2014 [Mul+14]
34 Felleisen et al., Semantics En-
gineering with PLT Redex, 2009
[FFF09]

specification languages in which users can write the semantics of their
target language and automatically generate various tools from this
semantics, ranging from interpreters and compilers for multiple back-
ends to sophisticated program analysers. Among these frameworks,
K’s agenda is closest to ours, as it automatically generates tools that
support various forms of program analysis, including verification. K
has been instantiated to several programming languages, including
JavaScript and C, and is used in industry for the symbolic analysis of
Ethereum bytecode. However, to our knowledge, K does not support
any compositional analysis.

10.3.3 Symbolic lifting frameworks

Symbolic lifting frameworks, such as Rosette and Chef, automatically
lift a concrete interpreter to a symbolic interpreter.

Rosette35 extends Racket36 with solver-aided facilities for creating 35 Torlak et al., “Growing solver-
aided languages with rosette”,
2013 [TB13]; and Torlak et al.,
“A lightweight symbolic virtual ma-
chine for solver-aided host languages”,
2014 [TB14]
36 The Racket Team, The Racket
programming language, 2024 [The24]

symbolic values and expressing constraints on those values. With
Rosette, a concrete interpreter for the target language is written in
Racket and is then symbolically interpreted using Rosette’s core sym-
bolic execution engine. Rosette, among other achievements, has been
successfully applied to find bugs in parts of the Linux Kernel37. How-

37 Nelson et al., “Scaling symbolic
evaluation for automated verification
of systems code with Serval”, 2019
[Nel+19]

ever, an earlier version of the whole-program symbolic testing for
JavaScript, currently available in Gillian-JS, was implemented using
Rosette38. This implementation was two orders of magnitude slower

38 Santos et al., “Symbolic Execution
for JavaScript”, 2018 [San+18]

than the current Gillian-JS39, suggesting that a native implementation,

39 This performance comparison is
reported in the JaVerT 2.0 paper.

such as that of Gillian, significantly improves efficiency.
Chef40 takes a specially packaged, concrete interpreter as input and

40 Bucur et al., “Prototyping symbolic
execution engines for interpreted
languages”, 2014 [BKC14]

analyses the target programs by symbolically executing the interpreter’s
binary. Chef has been applied to dynamic languages, such as Python
and Lua. However, the authors comment that its applicability is limited
to languages with moderately sized interpreters. Chef would, therefore,
not be an appropriate tool for analysis of, for example, JavaScript
programs.

10.4 Combining UX and OX analysis

Smash, developed by Godefroid et al.41, is the most well-known tool that 41 Godefroid et al., “Compositional
May-Must Program Analysis: Un-
leashing The Power of Alternation”,
2009 [GNR09]

exploits both OX and UX reasoning. It uses first-order logic (as opposed
to separation logic). It can alternate between OX and UX reasoning to
improve the precision and efficiency of the OX analysis. This approach
contrasts with Gillian, which can host either OX or UX analyses but has
not explored the option of combining their powers. However, according

114 gillian

to Le et al.42, who report on personal communication with Godefroid, 42 Le et al., “Finding real bugs in big
programs with incorrectness logic”,
2022 [Le+22]

Smash-style analyses seem to have faced obstacles in practice and were
“used in production at Microsoft but are not used by default widely in
their deployments, because other techniques were found which were
better for fighting path explosion.”

10.5 Monadic symbolic execution

In Chapter 6, we define a symbolic execution monad for writing symbolic
execution processes, facilitating soundness proofs. We now discuss
similar work.

Mensing et al.43 propose a recipe for deriving a symbolic execu- 43 Mensing et al., “From definitional
interpreter to symbolic executor”,
2019 [Men+19]

tor from a definitional interpreter written in Haskell. They compile
programs to command trees using a free monad and execute them
using a small-step symbolic semantics. However, their approach is
only evaluated using a small, simply-typed lambda calculus, and their
preliminary evaluation suggests that the resulting engines are several
orders of magnitude slower than ours. In addition, their work does
not formally justify the soundness of the obtained interpreters. Finally,
their approach relies on Haskell-specific features such as lazy evaluation.
Our approach, on the other side, is implementable in any functional
programming language.

Grisette44 is a Haskell library for performing symbolic compilation. 44 Lu et al., “Grisette: Symbolic
Compilation as a Functional Pro-
gramming Library”, 2023 [LB23]

As opposed to symbolic execution, symbolic compilation transforms
an entire program into a single SMT query in the style of CBMC.
The library automatically performs optimisations and allows for state
merging. Grisette shows performance improvements over Rosette by
an order of magnitude and a reduced generated formula size by a
similar scale. However, Grisette has not been applied to the symbolic
compilation of real-world languages and provides no soundness result.
Nevertheless, it would be interesting to explore a version of Gillian
backed by symbolic compilation using Grisette instead of symbolic
execution.

µVeriFast45 is a simplified Haskell implementation of VeriFast that 45 Devriese, “Modular Effects in
Haskell through Effect Polymorphism
and Explicit Dictionary Applica-
tions”, 2019 [Dev19]

makes use of a monadic approach to implement a simplified version of
VeriFast. It serves as a case study for a general approach to implement
modular effects in Haskell. This implementation does not come with
a formalisation of the symbolic exeuction engine, and the monadic
approach is not used to simplify the proofs of soundness.

Finally, Keuchel et al.46 formalise symbolic execution in Coq using 46 Keuchel et al., “Verified sym-
bolic execution with Kripke spec-
ification monads (and no meta-
programming)”, 2022 [Keu+22]

Kripke specification monads. Their formalisation offers a powerful
monad that captures sufficient information to simplify the path con-
dition during execution. In contrast, our formalisation does not allow
this, as simplifying the path condition might lead to disconnections
between the variables in the state and those in the path condition. In
addition, Keuchel et al. fully prove the soundness of their approach in
Coq and even perform a case study using separation logic, obtaining a
manual CSE tool embedded in Coq. Their approach does not, however,
aim at designing symbolic execution tools outside of Coq and is also
not automated. As such, it cannot be used in the context of Gillian.

Part II
Gillian-C

Chapter 11

Gillian-C: What and why?

Be you. Be proud of you. Because
you can be do what we want to do.

François Hollande, 2015

In 2024, C remains one of the most widely used programming lan-
guages in the world, particularly for systems programming. Its low-level
nature and (in appearance) permissive fined-grained control make it a
popular choice for writing performance-critical software. However, it
also comes with many pitfalls. For example, it provides virtually no
static check for memory safety, making it easy to introduce bugs that
can lead to security vulnerabilities. It is also known for its undefined
behaviours, which exist in the specification to permit certain compiler
optimisations, but can lead to unexpected results in practice. These
rather unfortunate properties make C a prime target for dynamic and
static analysis tools, including sanitisers1, fuzzers2, concolic execution 1 Nethercote et al., “Valgrind: a

framework for heavyweight dynamic
binary instrumentation”, 2007 [NS07];
and GNU GCC developers, Program
Instrumentation Options - GNU
GCC, 2024 [GNU24]
2 Haller et al., “Dowsing for over-
flows: a guided fuzzer to find buffer
boundary violations”, 2013 [Hal+13]

tools3, bounded model checkers4, abstract interpreters5, compositional

3 Cadar et al., “KLEE: unassisted
and automatic generation of high-
coverage tests for complex systems
programs”, 2008 [CDE08]
4 Clarke et al., “A Tool for Checking
ANSI-C Programs”, 2004 [CKL04]
5 Cousot et al., “The ASTREÉ
Analyzer”, 2005 [Cou+05]; and
Kirchner et al., “Frama-C: A software
analysis perspective”, 2015 [Kir+15]

symbolic execution tools6, and foundational verifiers7. This was our

6 Jacobs et al., “VeriFast: A Powerful,
Sound, Predictable, Fast Verifier for
C and Java”, 2011 [Jac+11]
7 Sammler et al., “RefinedC: automat-
ing the foundational verification of C
code with refined ownership types”,
2021 [Sam+21]; and Appel, “Verified
Software Toolchain”, 2011 [App11a]

main motivation for exploring using Gillian to analyse C code.
In addition, we felt that Gillian being able to tackle both C and

JavaScript would demonstrate its flexibility and the viability of our
parametric approach. As detailed shortly, the C state model is practi-
cally the antipode of the JS state model: C is low-level, with manual
memory management, pointer arithmetic, unsafe operations and byte-
level abstraction, whereas JS is fully safe, garbage-collected, and has a
high-level object-oriented dynamic memory model.

Importantly, designing Gillian-C has also allowed us to explore
and leverage a unique aspect of Gillian’s parametric approach that
distinguishes it from other CSE tools, which is that the representation
of symbolic states is fully decoupled from the associated assertions. In
particular, in Gillian-C, objects are represented in the symbolic heap as
trees, capturing the low-level layout of bytes in memory. For instance,
the production of both the assertion p ↦→int8 0 ∗ (p+ 1) ↦→int8 0 and
the assertion p ↦→int16 0 yields the same symbolic state. This design
enables Gillian-C to automate reasoning when manipulating the heap
at the byte level. In contrast, tools like VeriFast, which preserve a tight
correspondence between the symbolic heap and the assertions, require
manual user intervention to convert between these two assertions.

We have evaluated Gillian-C comprehensively on real-world case
studies. When it comes to whole-program symbolic testing, we have
created a suite of symbolic tests for Collections-C, an open-source
library of data structures for C, finding several bugs that were then

118 gillian

fixed by the library developers. When it comes to verification, we
have verified the AWS Encryption SDK message-header deserialisation
module, which is stable, critical, industry-grade code (∼950 lines) that
uses advanced language features to manipulate complex data-structures.
In addition to identifying potential vulnerabilities, this case study has
demonstrated the feasibility of a multi-language verification workflow
with Gillian, where a library implemented in both C and JS was verified
with the help of the same pure abstractions. Finally, when it comes
to bi-abduction, we also used the Collections-C library to experiment
with automatic synthesis of under-approximate specifications, obtaining
promising performance. In this chapter, we give a quick tour of the
infrastructure of Gillian-C and showcase its analyses and features.

11.1 The Gillian-C Infrastructure

Gillian-C is a Gillian instantiation, and as such requires a compiler
from C to GIL, Gillian’s intermediate language, and a symbolic state
model for the Gillian back-end.

Figure 11.1: Gillian-C: architecture.

When using Gillian-C, the C program to be analysed is first compiled
into an intermediate language known as C#minor (read: “C sharp
minor”) using the CompCert verified compiler8. Subsequently, Gillian- 8 Leroy et al., “Formal Verification

of a C-like Memory Model and
Its Uses for Verifying Program
Transformations”, 2008 [LB08]; Leroy,
“Formal verification of a realistic
compiler”, 2009 [Ler09b]; and Leroy,
“A Formally Verified Compiler Back-
end”, 2009 [Ler09a]

C carries out a lightweight translation from C#minor to GIL, the
intermediate language of Gillian. The GIL program is then analysed
using the Gillian-C back-end, which is Gillian’s core, parameterised with
the Gillian-C symbolic state model. This infrastructure allows Gillian-
C to cover a large subset of C features, including pointer arithmetic,
structures, first-class function pointers, unstructured control flow using
goto statements, and access to the byte-level representation of objects.

Being an instantiation of Gillian, Gillian-C supports three types of
analyses: whole-program symbolic testing, compositional verification,
and specification generation using bi-abduction. Notably, the Gillian-C
state model supports both over- and under-approximation at the flip
of a switch, ensuring that compositional verification provides sound
functional correctness guarantees while bi-abduction generates sound
incorrectness separation logic specifications.

gillian-c: what and why? 119

For compositional verification, users are expectedly required to
provide logic annotations such as specifications, loop invariants, and
lemmas. Gillian-C offers a straightforward separation-logic assertion
language tailored for annotating C programs, which translates directly
into GIL. As CompCert does not accommodate logic annotations, these
are parsed independently by the Gillian-C front-end, translated into
GIL separately from the C program, and then integrated into the
resulting GIL program.

11.2 Whole-program symbolic testing

Recall that whole-program symbolic testing (WPST) consists of sym-
bolically executing a program starting from its entry point, which is
the main function in C. For illustrative purposes, we use a simplified
version of a test that revealed a bug in the Collections-C library. The
corresponding program is given in Figure 11.2, and described below.

#define INITIAL_CAPACITY 4

// A dynamic array structure (or vector) of integers.
typedef struct Array { int *buffer; size_t capacity; size_t size } Array;

void array_new(Array *arr) {
// Creates an array with an initial capacity of 4 and size 0.
...

}

void push(Array *ar, int value) {
// Extends a given array with a given value.
// If array is full, allocates a new buffer with twice the capacity,
// copies content of old buffer into new buffer, and frees old buffer.
...

}

void remove(Array *ar, size_t index) {
// Removes the element at a given index from a given array,
// moving all subsequent values one position to the left.
if (index != ar→ size - 1) {

size_t bytes_to_move = (ar→ size - index) * sizeof(int);
memmove(
&(ar→ buffer[index]),
&(ar→ buffer[index + 1]),
bytes_to_move

);
}
ar→ size--;

}

int main() {
FRESH_UINT(init_loops);
Array arr; array_new(&arr);
for (unsigned int i = init_loops; i > 0; i--)

push(&arr, i);
for (unsigned int i = init_loops; i > 0; i--)

remove(&arr, 0);
assert(arr.size == 0);
return 0;

}

Figure 11.2: A small C symbolic test
that detects an out-of-bound access.

This symbolic test creates a symbolic integer, init_loops, and uses
it to push init_loops integers into an array, then removes them one

120 gillian

by one. The test checks that the array is empty at the end. When
running this test with Gillian-CUsing the command gillian-c wpst

array_oob.c --unroll 10 -l disabled, where array_oob.c is the name of the
file containing the program, and --unroll 10 specifies that loops should
be unrolled 10 times, and -l disabled specifies that exhaustive symbolic
trace logging should be disabled., the tool will generate the the following
message (with parts elided for clarity):

Compilation time: 0.019958s

Total time (Compilation + Symbolic testing): 0.093744s

Errors occurred!

Here’s a counter example: [(#lvar0: 4i)]

Here is a final symbolic state at error time:

[. . .] Procedure ‘i__memmove’ [. . .]

raised: BufferOverrun [. . .]

The error message states that the symbolic test failed, and provides a
concrete value for the generated symbolic variable that would apparently
lead to an out-of-bound access. Further, the tool provides a pretty-
printing of the symbolic state at the time of the error, which indicates
that the error occurred in the memmove function while the array had
capacity 4 and size 4. In the remove function, when index is 0 and
size is 4, it is computed that 4 integers should be moved to the left,
starting from index 1 (index + 1). However, as the capacity of the array
is 4, this range extends beyond the end of the array, thus causing an
out-of-bound access.

As confirmation, executing the same program with init_loops = 4

using a sanitiser such as Valgrind does raise a similar error, confirming
an out-of-bounds access. The fix, which was accepted by the maintainer
of the library9, was to modify the computation of bytes_to_move to be 9 Ayoun, fix buffer overflow -

Collections-C - Github, 2019 [Ayo19a](ar→ size - index - 1)* sizeof(int).

Comparison with CBMC CBMC is a state-of-the-art bounded model
checking tool for C. It takes similar inputs to Gillian-C in WPST
mode, and provides similar correctness guarantees. When running this
symbolic test with CBMC10, using the same unrolling bound (10), 10 We use CBMC v5.95.1, released

October 2023, with arguments that
should provide similar guarantees
to Gillian-C. More details in Chap-
ter 14.

CBMC is also able to detect this bug, yielding the following message:
line 33 memmove source region readable: FAILURE

However, CBMC does so within a longer time frame, taking about 16s
to complete the analysis, compared to Gillian-C’s 0.093s. In Chapter 14,
we provide a more extended comparison between Gillian-C and CBMC
on the entire Collections-C library.

11.3 Compositional verification

To illustrate compositional verification we reuse the previous example,
focussing this time on the push function, the definition of which is given
in Figure 11.3, simplified to ignore overflow checks.

When pushing, if the size of the content is equal to the capacity of
the array, the function re-allocates a new buffer with twice the capacity,
copies the content of the old buffer into the new buffer, and frees the

gillian-c: what and why? 121

void push(Array *ar, int value) {
if (ar→ size == ar→ capacity) {

ar→ capacity *= 2;
int *new_buffer = malloc(ar→ capacity * sizeof(int));
memcpy(new_buffer, ar→ buffer, ar→ size * sizeof(int));
free(ar→ buffer);
ar→ buffer = new_buffer;

}
ar→ buffer[ar→ size++] = value;

}

Figure 11.3: Definition of push
function for the dynamic array
example, simplified to ignore overflow
checks.

old buffer. The function then adds the new value at the end of the
array, which must have sufficient capacity to host it.

To verify correctness of this function, we start by writing a separation-
logic predicate valid_array(ar, content) that captures the invariant of the
array structure. This predicate, given in Figure 11.4 (simplified), states
that ar is a pointer to a valid array with content content if:
• ar is a valid pointer to an owned region of memory that hosts a

structure of type Array with fields #buffer, #capacity, and #size11, as 11 The # in front of the variable
names, when inside a predicate,
indicate implicitly existentially-
quantified variables.

specified by the points-to predicate;
• the number of elements in the array does not exceed its capacity;
• there is an array of #size integers starting from pointer #buffer,

holding contents captured by the sequence content;
• any memory between the end of the array content and the end of

the allocated space may be uninitialised; and
• the buffer was allocated with malloc, using the capacity of the array.

/*@ pred valid_array(+ar, content) {
ar → struct Array { #buffer; #capacity; #size } *
#size <= #capacity *
ARRAY(#buffer, int, #size, content) *
UNINIT(#buffer + #size, (#capacity - #size) * sizeof(int)) *
MALLOCED(#buffer, #capacity * sizeof(int))

} */

Figure 11.4: Definition of the
valid_array predicate (simplified).

Note also the + in front of the ar argument of the predicate, indicating
that it is an in-parameter, while content is an out-parameter.

With this predicate in place, we can write a specification for the
push function, as given in Figure 11.5. The specification states that,
given a pointer to a valid array ar with content content, the function
push will modify the array in place such that, at the end, ar is a valid
array with content content @ [value], where @ denotes the concatenation
of two sequences.

/*@ spec push(ar, value) {
requires: valid_array(ar, content)
ensures: valid_array(ar, content @ [value])

} */

Figure 11.5: Specification of the push
function (simplified).

Gillian-C is able to fully-automatically verify this specification with-
out any further user intervention. On our machine, which is a MacBook
Pro 2019, with a 2.3GHz 8-Core Intel Core i9 processor and 16GB of
RAM, the verification takes 0.23s.

122 gillian

Comparison with VeriFast VeriFast is the state-of-the-art composi-
tional verifier for C. Its focus, however, is on performance and pre-
dictability, rather than automation. For the verification of the push

function, VeriFast requires the user to write 4 additional lines of tactics
to guide the proof, while Gillian-C requires none. On the other hand,
with these annotations in place, VeriFast verifies the function faster
than Gillian-C, in 0.08s.

Comparison with CN More recently, CN12 has seen a rise in popularity 12 Pulte et al., “CN: Verifying Sys-
tems C Code with Separation-Logic
Refinement Types”, 2023 [Pul+23]

as a compositional verifier for C. CN works similarly to VeriFast, but
is based on Cerberus, a thoroughly validated semantics of C. For the
verification of the push function, CN requires the user to write 6 lines
of annotations, and verifies the function in 35.5s.

11.4 Specification synthesis using bi-abduction

The third analysis Gillian-C is able to perform is the generation of
incorrectness logic specifications using bi-abduction. These specification
can then be used to automatically detect bugs in the program that are
guaranteed to be true bugs13, although this last step has not yet been 13 Le et al., “Finding real bugs in big

programs with incorrectness logic”,
2022 [Le+22]

implemented in Gillian.
To avoid cluttering the presentation, we give an illustrative example

simpler than dynamic arrays as the size of the generated specifications
grows quickly. Consider the function deref given in Figure 11.6: it
receives a pointer to an integer, and returns the value contained at the
corresponding address.

int deref(int *p) {
return *p;

}

Figure 11.6: Implementation of the
deref function.

When running Gillian-C in bi-abduction mode, the tool will generate
one success specification and one bug specification, both given in
simplified form in Figure 11.714.

14 We use mathematical notation, as
these specifications are generated at
the GIL level, and not at the C level.

[p = NULL]

int deref(int *p)

[Err : r. r = “SegFault′′]

[p ↦→int v]

int deref(int *p)

[Ok : r. ↦→int v ∗ r = v]

Figure 11.7: Incorrectness separation
logic specifications synthesised by
Gillian-C using bi-abduction for the
deref function.

The success specification states that, given a valid pointer p to an
integer, the function will successfully return that integer. The bug
specification captures the case where the pointer is NULL, and the
function raises a segmentation fault. In Chapter 14, we show that
Gillian-C is able to generate specifications for the entire Collections-C
library, showing promising performance.

Chapter 12

The Gillian-C symbolic state model

The Gillian-C symbolic state model is based on the CompCert memory
model. We give an overview of this memory model, and explain the
challenges in implementing a corresponding symbolic state model. In
response to these challenges, we introduce a novel symbolic represen-
tation of memory blocks called symbolic block trees. We present the
symbolic state model of Gillian-C, together with its associated actions,
core predicates, fixes, and discuss its implementation.

12.1 The CompCert memory model

As the front-end of Gillian-C is built on CompCert, the natural choice
for us was to adopt the CompCert memory model as the foundation for
the state model of Gillian-C. This choice is further supported by the
extensive documentation of the CompCert memory model in academic
literature1 and its implementation in the CompCert Coq development. 1 Leroy et al., “The CompCert

Memory Model, Version 2”, 2012
[Ler+12]

CompCert models C memory as collections of memory objects or
blocks : each block is identified by a block identifier, l ∈ Loc, and
contains a sequence of bytes. These low-level sequences of bytes are
then interpreted at a higher level as the C values that the programmer
is familiar with, vC ∈ CVal (defined in algebraic datatype form in
Figure 12.1). This interpretation is done with the help of memory
chunks, τ ∈ Chunk (defined in algebraic datatype form in Figure 12.2),
which hold information about the size, type (integer or float), signedness
(signed or unsigned) and (implicitly) alignment of a value to be loaded
from or stored into memory.

type CVal =
| Vint of Z
| Vlong of Z
| Vfloat of R (* Simplified *)
| Vptr of Loc × N

Figure 12.1: Definition of C values
(simplified).

type Chunk =
| Mint8signed | Mint8unsigned
| Mint16signed | Mint16unsigned
| Mint32 | Mint64 | Mfloat32
| Mfloat64 | Many32 | Many64

Figure 12.2: Definition of C chunks.

The memory model exposes four basic operations:

• load(l, o, τ), which receives a block identifier l, an offset o ∈ N in
the block, the memory chunk τ ∈ Chunk describing the size, type,
signedness and alignment of the value to be loaded, and returns the
appropriate value from memory;

• store(l, o, τ, v) which receives a block identifier, offset, memory
chunk, as well as the value vC ∈ CVal to be stored, and updates the
memory accordingly; and

• alloc(n), which receives a positive integer n, allocates a new block
of n bytes, and returns a pointer to the first byte;

• free(l), which receives a block identifier l, and deallocates the
corresponding block.

For example, given a block identifier l that holds a sequence of bytes
[0, 1, 2, 3, 4, 5, 6, 7], and assuming a big-endian architecture:
• load(l, 2, Mint8signed) returns 2;
• load(l, 2, Mint16unsigned) returns 2 ∗ 256 + 3 = 515;
• load(l, 3, Mint16signed) fails because of alignment restrictions (a

124 gillian

16-bit value has to be aligned to a multiple of two); and
• store(l, 4, Mint32, 117835012) results in the sequence of bytes

[0, 1, 2, 3, 7, 6, 5, 4].

Challenges The above description of the CompCert memory model
suggests that a more advanced form of the symbolic state model of
Wisl could be useful in the creation of a Gillian-C symbolic state model.
Recall from Chapter 9 that the state model of Wisl is also based on a
block-offset approach2, and can be built as a partial finite map from 2 In fact, the state model of Wisl was

designed to be a simplified version of
the C state model.

block identifiers to list of values that are exclusively owned, and where
entire list of values can be freed at once: S = PMap(Loc,Freeable(List)).

However, the Wisl state model has major limitations when it comes
to the real-world applications of C. First, in the List symbolic state
model, blocks are modelled as partial finite maps from offsets to values,
preventing representation of blocks of unbounded size. Therefore, to
reason about such blocks we would have to resorting to inductive
predicates, which would come with a substantial automation cost.
Second, using the List state model would require of us to read and write
symbolic values byte by byte, decomposing and recomposing them at
each operation. This would be inefficient and result in having complex
symbolic expressions in the state.

12.2 Symbolic block trees: overview

To answer the above challenges, we introduce a novel representation of
blocks in memory, called symbolic block trees and denoted by BlockTree.
Symbolic block trees are specifically tailored to the C state model. In
particular, they support:
1. representation and reasoning about blocks of unbounded size;
2. abstraction preservation, in that they allow for efficient higher-

level value representation, but also for these values to be decomposed
into individual bytes;

3. variable-sized values, in that they allow for blocks to contain
representations of values of different sizes within the same block;

4. C-specific behaviour, such as failure on uninitialised memory
access or padding between fields of C structures; and

5. compositional reasoning, in that they allow for the modelling of
partially owned blocks.
With symbolic block trees in place, we define the symbolic state

model of Gillian-C as:

SC = PMap(Loc,Freeable(BlockTree))

and inherit the four basic operations of the CompCert memory model
as the actions of SC .

The basics A symbolic block tree is a binary tree in which each node
represents a range within a memory block, captured by two symbolic
natural numbers, denoting the start-offset and end-offset of the range.
Each node also has its content, which is either: a symbolic C value;
a symbolic sequence of values; a special uninitialised value with a

the gillian-c symbolic state model 125

quantity (explained shortly); a special “zero” value which exists only as
an optimisation; or an indicator that the node is “not owned”, meaning
that its range is not part of the symbolic state. Finally, and expectedly,
each node in a symbolic block tree may have zero or two children. The
definition of symbolic block trees as an algebraic datatype is as follows:
type qty = Partially | Totally

type content =

| Value of Val × Chunk

| Array of Val × Chunk

| Uninitialised of qty
| Zeros
| NotOwned of qty

type node = {

range: N× N;
content: content;
children: (node * node) option;

}

Symbolic block trees come with several well-formedness invariants.
First, for each node, the end-offset must be greater than the start-offset.
Second, the ranges of children nodes must be disjoint, contiguous and
fully cover the range of their parent node. Third, the content of a node
must match its size. For instance, a node containing a value of chunk
int32 must have a range spanning 4 bytes. Similarly, a node containing
of list of values of chunk uint16 must have a range spanning twice as
many bytes as the length of the sequence value it contains. Finally, the
node contents must be sufficient for understanding if a load operation
can be performed, independently of its children.

We illustrate this last invariant with a more elaborate example. Take
a structure S made up of two fields, x and y, of respective types int

and long, on an architecture where an int value is 4 bytes long and a
long value is 8 bytes long3: 3 Gillian-C assumes a fixed architec-

ture that characterises the size and
alignment of each type as well as
endianness for the values. This ar-
chitecture can be configured through
the command line.

struct S { unsigned int x; long y; };

A block containing an instance of S can be represented using the tree
in Figure 12.3. The left-most and right-most leaf nodes, respectively
covering the ranges [0, 4) and [8, 16) correspond to the fields x and y

of the structure, as per the C structure layout algorithm. In addition,
the leaf node covering the range [4, 8) is marked as uninitialised, as it
corresponds to the padding between the fields of the structure. The
root node and its left child are both marked as partially uninitialised,
as they contain uninitialised memory somewhere in their ranges.

Uninitialised Partially

Uninit. Partially

x : uint32 Uninit. Tot.

y : int64

0 16

0 8 16

0 4 8

Figure 12.3: Symbolic block tree
representing a block containing an
instance of S where fields x and y

respectively contain symbolic values
x and y.

This structure makes loading values from memory efficient, as the
tree can be traversed to find the appropriate range. Once the range is

126 gillian

found, the content of the node can be used directly, without the need
to access the children. For example, the operation load(l, 0, uint32)

on the block in Figure 12.3 would traverse the tree to find the node
covering the range [0, 4) and return the symbolic value x it contains.
Furthermore, if the pointer to the structure were to be cast to an
unsigned long∗ pointer, the load operation would use the range [0, 8).
In that case, the corresponding node would be found to contain the
Uninitialised Partially value, and the load would immediately
yield an erroneous outcome as uninitialised memory access is identified
as undefined behaviour in the C standard.

Further decomposition A more complex operation would consists
of loading only the first byte of the structure, which can be done by
casting a pointer to its x field to a char∗ pointer. In that case, the
load operation would decompose the leftmost node into two nodes, one
containing the first byte of x and the other containing the remaining
three bytes, as depicted in Figure 12.4.

x : uint32

x0 [x1, x2, x3]

0 4

0 1 4

Figure 12.4: Result of reading
the first byte of the leftmost node
from Figure 12.3. x0 has chunk
uint8, while the right child is a
sequence of chunk uint8 and length
3. The values of the xi are computed
appropriately according to the
endianness of the architecture.

Performing the read operation in this way has the advantage of
preserving value abstraction. While the node x is decomposed further,
it still remains in the tree, and if a subsequent read is performed on
the range [0, 4), the tree will be traversed to find the node x directly,
ignoring its children. Furthermore, if the user performed a read op-
eration on the range [0, 1), there is a chance they will either perform
another read or write at the same range. As the tree already has the
correct shape, this operation can be performed efficiently again.

Storing The store operation is performed similarly to the load oper-
ation, but also updates the parents once the corresponding leaf node
has been updated. For instance, updating the field x of the structure
in Figure 12.3 with a value x′ would not change the parents, since its
sibling node is still uninitialised. On the other hand, updating the first
byte of x would be performed in three steps. First, the first byte would
be isolated in its own node as in Figure 12.4. Second, the value of
the leftmost leaf node would be updated to consider the value of the
new byte x′0. Finally, the parent node would be reconstructed to the
sequence [x′0, x1, x2, x3]. The updated tree is given in figure Figure 12.5.
When attempting to read this range using the chunk uint32, this array
would be decoded into a value depending on the endianness of the
architecture. For instance, on a big-endiann architecture, the array
would be decoded into the value 224 · x′0 + 216 · x1 + 28 · x2 + x3. The
case of partially updating values and then reading them is rare enough
for us to believe that the performance cost of manipulating a complex
symbolic value obtained from the recomposition is acceptable.

the gillian-c symbolic state model 127

[x′
0, x1, x2, x3]

x′
0 [x1, x2, x3]

0 4

0 1 4

Figure 12.5: Result of updating the
first byte of the leftmost node of
Figure 12.3. The node is split as in
Figure 12.4, the left child is updated,
and the parent is then reconstructed.
The updated components are high-
lighted in purple.

Unbounded reasoning Symbolic block trees can model blocks of
arbitrary size by making the indexes in the ranges that annotate each
node symbolic. The tree invariants, e.g. that the ranges of the children
node cover the range of the parent, are preserved by all operations and
are entailed by the path condition throughout execution.

Instead of a simple binary search in a tree, each choice could now
become a SAT check. While such SAT checks can become expensive in
extreme cases, they have been manageable in practice. In particular,
in the large majority of cases, all nodes of a symbolic block tree are
annotated either with concrete offsets, or with offsets of the form ib+ io,
where ib is a base symbolic offset used across all nodes of the tree, and
io is a concrete offset. When an access is performed with an offset of
the same shape, range comparison can be reduced to the comparison
of concrete offsets and be decided without using the SMT solver.

Allocation Symbolic block trees come with two flavours of allocation,
respectively corresponding to the behaviour of the standard malloc

and calloc functions in C. The C malloc function allocates a block of
memory of a given (potentially symbolic) size, but does not initialise
it: this is the behaviour of our allocation action, which creates a node
of a given size with content Uninitialised Totally. The C calloc

function allocates a block of memory of a given size, and initialises it
to zero: this we accomplish by first using the allocation action, as in
the malloc case, and then using another action that zero-initializes
entire arrays of data, setting the node content to Zeros. In this way,
we avoid having to deal with sequences of values constrained by an
awkward quantified formula of the form |x| = n ∧ ∀i ∈ [0, n), x[i] = 0.

Block bounds and freeing Recall that the Freeable state model pre-
sented in Chapter 8 requires its parameter to expose a function indicat-
ing if the content is fully and exclusively owned. Symbolic block trees
maintain an additional block bound value, which is a symbolic natural
number that indicates the maximum size of the block. It has the same
use as the bound in the List state model, and can also be ⊥ if the size
of the block is not known. In the context of symbolic block trees, a
block can be freed if it satisfies the following three conditions:
1. its bound, n, does not equal ⊥;
2. its root node span is exactly from 0 to n;
3. its root node must not be of the kind NotOwned.

Note that the root node being of the kind NotOwned captures the
case in which there exists at least one range of the block that is not
owned, and therefore the block cannot be freed.

128 gillian

Additional actions The Gillian-C symbolic memory model exposes
two further actions: one that performs a memory copy of an array of
data; and one that performs pointer validity check for valid comparisons.
More detail about the latter is provided in §13.1.3.

12.3 Symbolic block trees: implementation

We provide a high-level presentation of the implementation of symbolic
block trees in Gillian-C. We first present a selection of tree-manipulating
operations, followed by the implementation of the load and store

actions of the memory model.

12.3.1 Core functions

We present three low-level operations used for manipulating symbolic
block trees:
• split, which decomposes one node into two nodes;
• merge, which composes two nodes into a single one; and
• frame_range, which performs frame inference, precisely isolating

the specified range and potentially updating the node.

Splitting The split operation decomposes a given node into two
nodes. In the example of the previous section, it is the operation used
to produce the children node of the x node in Figure 12.4. It takes a
leaf node node, and an offset o that must be in the range of n, and
returns a pair of nodes (n1, n2) such that n1 covers the range from the
beginning of n inclusive to o exclusive, and n2 covers the range from o

inclusive to the end of n:

val split : node → N → (node × node) symex

Note that this operation is defined within the symbolic execution monad,
as it may instantiate new symbolic variables and add constraints to
the path condition. Below, we provide a (simplified) implementation
for two representative cases:

let split node o =
let (os, oe) = node.range in
let* left_content, right_content =
match node.content with
| Uninitialised Totally →
Symex.return (Uninitialised Totally, Uninitialised Totally)

| Value (v, τ) →
let* b⃗ = bytes_of_value v τ in

let b⃗l = b⃗l = subseq(b⃗, 0, o− os) in

let b⃗r = b⃗r = subseq(b⃗, o− os, oe − o) in

Symex.return (Array (b⃗l, uint8), Array (b⃗r, uint8))
| (* ... *)

in
let left_node = {
range = (os, o); content = left_content; children = None;

} in
let right_node = {
range = (o, oe); content = right_content; children = None;

} in
Symex.return (left_node, right_node)

the gillian-c symbolic state model 129

The first case splits a node containing a totally uninitialised value,
which produces two totally uninitialised values.

The second case splits a single value of chunk τ . We explain this case
step-by-step using the example of Figure 12.4, where a node spanning
the range [0, 4) and containing a single value x of chunk uint32 is split
at offset 1. In that case, we have that os = 0, and oe = 4.

First, the value x is decomposed into bytes using the bytes_of_value

function, which yields a symbolic value b⃗ = [x0, x1, x2, x3], which repre-
sents the sequence of bytes that encodes x under the used architecture.
Next, two fresh symbolic values, b⃗l and b⃗r are created: b⃗l is computed
as the left subsequence of b⃗ up to offset o (in our example, o = 1 and
os = 0, so b⃗l = [x0]), and b⃗r is computed as right subsequence of b⃗
starting from offset o − os = 1, and of length oe − o = 3 (that is,
b⃗r = [x1, x2, x3]. Finally, the function returns two nodes, each contain-
ing the corresponding sequence of bytes, using the chunk uint8 that
corresponds to a raw byte.

Merging The merge operation is used to combine two nodes. It is used
to re-create a parent node after one of its children has been updated.
For instance, it is used in our running example to re-create the parent
node of Figure 12.5. It receives two nodes that are assumed to be
contiguous, and returns a single node covering both their ranges. We
provide an implementation of four representative cases:
let merge left right =
let (ols, o

l
e) = left.range in

let (ors, o
r
e) = right.range in

let parent_range = (ols, ore) in
let* parent_content =

match left.content, right.content with

1 | NotOwned Totally, NotOwned Totally →
Symex.return (NotOwned Totally)

2 | NotOwned _, _ | _, NotOwned _ →
Symex.return (NotOwned Partially)

3 | Value (vl, τl), Value (vr, τr) when τl = τr →
Symex.return (Array ([vl, vr], τl))

4 | Value (vl, τl), Value (vr, τr)
when is_float τl && is_int τr →
if mode = OX then

let* b⃗ = fresh_bytes (ore − ols) in

Symex.return (Array (b⃗, uint8))
else
Symex.vanish ()

| (* ... *)
in
Symex.return {
range = parent_range;
content = parent_content;
children = Some (left, right)

}

Case 1 merges two nodes that are totally not owned, which produces
a parent node that is totally not owned. Case 2 merges two nodes,
one of which is at least partially not owned, which produces a parent
node that is partially not owned. These two cases take precedence over
all the other cases, which is crucial to the behaviour of, for instance,
the free operation, which can operate only on a block that is entirely
owned. Case 3 merges two nodes that contain values of the same

130 gillian

chunk, which produces a parent node that contains the array of the
two values of that chunk.

Finally, case 4 is a good example of where over- and under-approxima-
tion come up in practice. This case merges two nodes that contain
values of different chunks: a float and an integer. At this point, Gillian-
C gives up on precision and, depending of the mode, either creates
a fresh, unconstrained sequence of bytes of the appropriate length
(hence over-approximating), or gives up on that path of execution by
vanishing (hence under-approximating). This is an implementation
choice of Gillian-C4; in particular, we estimate that if such an operation 4 In the real implementation of

Gillian-C, symbolic block trees have
an additional kind of node called
Lazy. Instead of approximating at
the time of merging the nodes, a
Lazy node is created, and approx-
imation is performed should that
node be accessed. In UX, this de-
lays vanishing if the value is never
needed, and in OX, this avoids cre-
ating symbolic variables and adding
unnecessary constraints to the solver.

is performed, the user is likely to not need precise knowledge of the
result loading the entire range of bytes as a single value.

Range-framing The frame_range operation is the core operation
of symbolic block trees. In essence, it uses binary search to perform
frame inference and isolate a specific range from a given node. Given
its importance, we describe this function in more detail and provide a
number of illustrative examples both here and later on, in the context
of loading and storing. We give explanations in the text, and also
annotate the code with further explanations where appropriate. The
full signature of the frame_range operation is:

val frame_range :
replace_node: (node → node symex) →
rebuild_parent: (node → node → node → node symex) →
node →
N × N →
(node × node) symex

The operation receives: the root node from which to extract the
range; the range of interest; and two functions, called replace_node

and rebuild_parent. The replace_node function updates the node that
covers the range of interest if appropriate, taking this node as an
argument. The rebuild_parent function receives the previous parent
node and its updated left and right nodes, and creates the new parent
node appropriately. The entire operation returns two nodes, the first is
the node that covered the range of interest before the operation, and
the second is the updated root node after the operation. The code of
frame_range is as follows:

. . .
0 4

Figure 12.6: A tree with a single root
node with range [0, 4).

let frame_range replace_node rebuild_parent root range :
let* new_root = extend_if_needed root range in
frame_inside replace_node rebuild_parent new_root range NotOwned Partially

. . . NotOwned Tot.

0 8

0 4 8

Figure 12.7: Tree from Figure 12.6
extended to the range [0, 8). The
added nodes are highlighted in
purple.

The frame_range function first calls the auxiliary function extend_if_needed,
which checks whether or not the range to be framed is contained within
the bounds of the provided root node, and if not, extends this root
node to contain this range by adding totally-not-owned fragments to
the left and/or to the right. For example, if we had a root node with
range [0, 4) from which we wanted to frame the range [0, 8), as in
Figure 12.6, extend_if_needed would return a tree in which the new root
would have the range [0, 8) and two children, with the left being the
node originally passed to frame_range (with range [0, 4)), and the right

the gillian-c symbolic state model 131

being a totally-not-owned node with range [4, 8), as in Figure 12.7.
Note that adding totally-not-owned fragments in this way is sound as
such fragments do not characterise any resource. Having ensured that
the targeted range is within the bounds of the root node, control is
then passed on to the frame_inside function, which performs the actual
framing. Its code is shown in Figure 12.8 below:

let rec frame_inside replace_node rebuild_parent root range =
(* Range of root node corresponds to requested range *)
if%sat Range.is_equal range root.range
then
(* Replace node and return *)
let* new_root = replace_node root in
Symex.ok (root, new_root)

else
(* Range of root node does not correspond to requested range... *)
match root.children with
(* ...and root node has children *)
| Some (left, right) →

(* Get the split-point of the children *)
let _, mid = left.range in
if%sat Range.point_strictly_inside mid range
(* Split-point is in the requested range *)
then
(* Tree rebalancing, elided due to complexity *)
...

(* Split-point is not in the requested range, meaning that the requested
range is fully contained within either the left or the right child. *)

else
if%sat Range.is_inside range left.range
(* The requested range is contained within the left child *)
then
(* Recursively frame inside the left child, ... *)
let* node, new_left = frame_inside replace_node rebuild_parent left range in
(* ...rebuild root given new left child, ... *)
let* new_root = rebuild_parent root new_left right in
(* ...and return *)
Symex.ok (node, new_root)

(* The requested range is contained within the right child *)
else
(* Recursively frame inside the right child, ... *)
let* node, new_right = frame_inside replace_node rebuild_parent right range in
(* ...rebuild root given new right child, ... *)
let* new_root = rebuild_parent root left new_right in
(* ...and return *)
Symex.ok (node, new_root)

(* ...and root node has no children *)
| None →

(* Split root node to isolate targeted range *)
let* new_root = split_to_range root range in
(* Recursively frame inside the obtained new root. This call is guaranteed to find the node with range

corresponding to the requested range, and will rebuild the parents as it traverses back up the tree. *)
frame_inside replace_node rebuild_parent new_root range

Figure 12.8: Implementation of the
frame_range function (excerpt)

and we only elide the part of the code related to tree rebalancing,
which is illustrated in one of the upcoming examples. The function
Range.is_equal returns an expression that evaluates to true if the two
ranges are equal, and the if%sat operator is used to perform the check
at the symbolic level, potentially branching, as described in Chapter 6.

132 gillian

12.3.2 Loading and storing

Loading The load operation of symbolic block trees is implemented
using the frame_range operation. Its implementation, with several
details regarding checking read permissions and alignment elided, and
instructive commentary inlined, is as follows:

(* Load value described by chunk τ from given node at offset o *)
let load node o τ =
(* The range to be framed starts from offset o

and its size is obtained from the chunk τ *)
let range = (o, o + size_of τ) in
(* Obtained node does not require modifications for loading *)
let replace_node = (fun node → Symex.ok node) in
(* Parents are rebuilt by simply connecting the new children *)
let rebuild_parent =
fun parent left right →
Symex.ok {
content = parent.content;
range = parent.range;
children = Some (left, right)

}
(* Obtain framed range representing the value, and the updated node *)
let* framed, new_node = frame_range node range replace_node

rebuild_parent in
(* Compute return value *)
let* ret_val =
match framed.content with
(* If any part of the framed range is not owned,

signal that there is missing resource *)
| NotOwned _ → Symex.miss MissingResource
(* If any part of the framed range is uninitialised,

signal an appropriate error *)
| Uninitialised _ → Symex.error UninitialisedAccess
(* Otherwise, decode the obtained value using

the information from the chunk τ *)
| content → decode τ content in

(* Return the computed value and the updated node *)
(ret_val, new_node)

Observe, in particular, that the load operation is able to differentiate
between missing resources and uninitialised access when the load oper-
ation cannot be correctly performed. Moreover, note how load obtains
the desired value by decoding the node that covers the range of interest
using the specified chunk. In the large majority of cases, the decoding
is a no-op, but sometimes, if the value is read using a different chunk
that the one used in the heap encoding, it may require re-encoding
the value (for example, by re-interpreting the value with a different
signedness). We elide the implementation of the decode function, but
note that its behaviour is what we call abstraction-preserving, in that
it only reasons at the byte level when absolutely necessary, thereby
yielding a more efficient engine.

Storing The store operation of symbolic block trees is also imple-
mented using the frame_range operation, as follows:

(* Store value v described by chunk τ into given node at offset o *)
let store node o τ v =
(* The range to be framed starts from offset o

and its size is obtained from the chunk τ *)
let range = (o, o + size_of τ) in
(* Obtained node is overwritten by the value to be stored, encoded

appropriately using the information from the chunk τ *)
let replace_node = (fun _ → Symex.ok (encode v τ)) in

the gillian-c symbolic state model 133

(* Parent nodes are rebuilt by merging the new children,
disregarding the previous parent entirely *)

let rebuild_parent = fun _ left right → merge left right in
(* Obtain framed range representing the value, and the updated node *)
let* framed, updated = frame_range node range replace_node rebuild_parent

in
match framed.content with
(* If any part of the framed range is not owned,

signal that there is missing resource *)
| NotOwned _ → Symex.miss MissingResource
(* Otherwise, return the updated node *)
| _ → Symex.ok updated

Examples To illustrate all of the above-mentioned operations, we
revisit dynamic arrays, our running example from the overview. The
tree in the figure below represents a buffer of size s, capacity c, with
content represented by α. We assume for the purposed of this example
that the array contains more than one element (i.e., that |α| > 1) and
that it can be extended without reallocation by more than one element
(i.e., that s+1 < c). The array content occupies a contiguous sequence
of bytes from 0 to 4s (as an integer occupies 4 bytes), whereas the
remained allocated space for the array occupies a contiguous sequence
of bytes from 4s to 4c.

Uninitialised Partially

α : [int32] Uninit Totally

0 4c

0 4s 4c

The first operation that we will perform is loading the leading element
of the array, resulting in the following tree:

Uninitialised Partially

α : [int32]

α[0] : int32 subseq(α, 1, |α| − 1)

Uninit Totally

0 4c

0 4s 4c

0 4 4s

As per the load operation, we first use frame_range to isolate a node
in the appropriate range (in this case, the range corresponding to the
first element of the array, which is [0, 4)). This requires of us to split
the array content into two children nodes, the left one having the range
[0, 4), corresponding to the element being loaded (this is also the node
that will be returned and is highlighted in purple), and the right one
having the range [4, 4s), corresponding to the rest of the array. The
operation does not modify the returned node, as per the definition of
replace_node), and also, as per the definition of rebuild_parent, does not
modify the content of any other nodes.

The second operation that we will perform is to extend the array
with an integer value a. As per the store operation, the first step is

134 gillian

to isolate the appropriate range using frame_range:

Uninitialised Partially

α : [int32]

α[0] : int32 subseq(α, 1, |α| − 1)

Uninit Totally

Uninit Totally Uninit Totally

0 4c

0 4s 4c

0 4 4s 4(s+ 1) 4c

and this, analogously to the above load example, results in the node
that represents the unused part of the array being split into the node
corresponding to the requested range (from 4s to 4(s+ 1), highlighted
in purple, and the node representing the rest of the unused part. Both
of these nodes are created with content Uninitialised Totally, as that
was the content of their parent node. The next step of store uses the
replace_node function to set the content of the pinpointed node to the
given value a, highlighted below in purple:

Uninitialised Partially

α : [int32]

α[0] : int32 subseq(α, 1, |α| − 1)

Uninit. Totally

a : int32 Uninit. Totally

0 4c

0 4s 4c

0 4 4s 4(s+ 1) 4c

In contrast to load, store also has to rebuild the parent nodes ap-
propriately. In this case, this means that the node covering the range
[4s, 4c) is updated from Uninitialised Totally to Uninitialised Partially,
as it now has a child that is not uninitialised. Updates further up the
tree are not required, as the root node is already partially uninitialised.
This is illustrated in the diagram below:

Uninitialised Partially

α : [int32]

α[0] : int32 subseq(α, 1, |α| − 1)

Uninit. Partially

a : int32 Uninit. Totally

0 4c

0 4s 4c

0 4 4s 4(s+ 1) 4c

We revisit this example further in the next subsection, giving insight
into the rebalancing and consumption mechanisms.

12.4 Symbolic block trees: assertion language

Recall from Chapter 5 that Gillian compositional state models are
required to provide a set of core predicates, together with a producer

the gillian-c symbolic state model 135

and consumer for each of them. The framework then uses these core
predicates as building blocks for the assertion language, by adding
support for existential quantifiers, separating conjunction, and variables.
The Gillian-C state model exposes five core predicates:
• the typed points-to predicate, ⟨TyPointsTo⟩(l, o, τ ; v), pretty-printed
(l, o) ↦→τ v, which states that the value v encoded with chunk τ is
stored starting from offset o in the block at location l;

• the array predicate, ⟨Array⟩(l, o, τ, n; v), which states that v is an
array of n values encoded with chunk τ stored starting from offset o
in the block at location l;

• the uninitialised predicate, ⟨Uninit⟩(l, o, n;), which states there are
n uninitialised bytes starting from offset o in the block at location l;

• the bound predicate, ⟨Bound⟩(l;n), which states that the block at
location l was allocated with bound n, and that any offsets beyond
that bound are to be considered out-of-bounds; and

• the freed core predicate, ⟨Freed⟩(l;), which states that the block at
location l has been freed; this predicate is provided by the Freeable

state model transformer described in Chapter 8.
We give more detail about the typed points-to predicate, as it is the

most important one. The idea of annotating points-to predicates with
a type in C is not novel to Gillian-C; it was introduced in a C version
of jStar5, and has also been used in VeriFast since its creation. 5 Parkinson et al., “Separation logic

and abstraction”, 2005 [PB05]We believe that the novelty of Gillian-C is its distinction between
the encoding of the symbolic heap and logic assertions, stemming from
the inherent flexibility of Gillian. In particular, in VeriFast, the heap is
represented as a list of heap chunks that is very similar to the structure
of the assertions themselves. In Gillian-C, however, the symbolic heap
is an expressive data structure, and logic assertions are only used as
a syntactic view of the heap. For example, take the following C code
with a simple specification:

//@ requires: p ↦→uint32 0 * (p+ 1) ↦→uint32 0 ∗ aligned(p, 8)
//@ ensures: (ret == 0) ∗ True
long test (int* p)
{
long* q = (long*) p;
return *q;

}

In the CompCert memory model, where there is no effective typing,
this specification is valid. In memory, the regions of memory at p and
p+ 1 are contiguous and contain only zeros. Therefore, reading them
using a chunk that covers both regions is valid and also yields zero.
VeriFast, however, requires the manual application of a lemma that
transforms the two heap chunks into a single one, whereas Gillian-C
is able to reason about the heap directly using the symbolic block
trees and can automatically perform the required transformation. In
particular, producing the pre-condition when p = (l, o) would yield the
following symbolic block tree represented in Figure 12.9 at location l.

When loading the value at pointer q, which is effectively the same
address as pointer p, the root node of this tree is found, and the array
[0, 0] : uint32 is decoded using the chunk uint64 into a single value 0.
The post-condition can then be successfuly verified automatically.

136 gillian

[0, 0] : int32

0 : int32 0 : int32

o o+ 8

o o+ 4 o+ 8

Figure 12.9: Result of producing
two contiguous cells of chunk uint32

containing value 0.

Production and consumption The production and consumption of
a single typed points-to predicate are implemented straightforwardly
using the frame_range function presented in the previous section.
Below, we give excerpts of their implementations, with explanations
inlined in the code:

let produce_points_to node o τ v =
(* The range to be framed starts from offset o

and its size is obtained from the chunk τ *)
let range = (o, o + size_of τ) in
(* Production, like storing, updates the content of the obtained

node appropriately using the information from the chunk τ *)
let replace_node = (fun _ → Symex.ok (encode v τ)) in
(* Parent nodes are rebuilt by merging the new children,

disregarging the previous parent entirely *)
let rebuild_parent = fun _ left right → merge left right in
(* Obtain framed range representing the value, and the updated node *)
let* framed, updated = frame_range node range replace_node rebuild_parent

in
match framed.content with
(* Production succeeds only if the production range was entirely not

present, returning the updated tree *)
| NotOwned Totally → Symex.return updated
(* Otherwise, it vanishes, indicating duplicated resource *)
| _ → Symex.vanish

let consume_points_to node o τ v =
(* The range to be framed starts from offset o

and its size is obtained from the chunk τ *)
let range = (o, o + size_of τ) in
(* Consumption sets the content of the obtained node to totally

not owned, effectively removing/consuming the pinpointed resource *)
let replace_node =
fun _ → Symex.return {

content = NotOwned Totally; range; children = None
}

in
(* Parent nodes are rebuilt by merging the new children,

disregarging the previous parent entirely *)
let rebuild_parent = fun _ left right → merge left right in
(* Obtain framed range representing the value, and the updated node *)
let* framed, updated = frame_range node range replace_node rebuild_parent

in
let* ret_val =
match framed.content with
(* If any part of the framed range is not owned,

signal that there is missing resource *)
| NotOwned _ → Symex.miss MissingResource
(* If any part of the framed range is uninitialised,

signal an appropriate error *)
| Uninitialised _ → Symex.lfail IncompatibleContent
(* Otherwise, decode the obtained value using

the information from the chunk τ *)
| content → decode τ content in

(* Return the computed out-value and the updated node *)
(ret_val, new_node)

Finally, we note that the production and consumption of array pred-
icates are similar to those of the typed points-to predicates, with the

the gillian-c symbolic state model 137

exception that the former use the decode_array and encode_array functions
that are more complex than their single-value counterparts and approx-
imate more often. We illustrate this consumption on the example from
the last section, attempting to consume the entire array, highlighted in
purple in the diagram below, with the requested range [0, 4(s+ 1)):

Uninitialised Partially

α : [int32]

α[0] : int32 subseq(α, 1, |α| − 1)

Uninit. Partially

a : int32 Uninit. Totally

0 4c

0 4s 4c

0 4 4s 4(s+ 1) 4c

Since in this case the requested range spans both children of the
root node, frame_range rebalances the tree, creating a new left child of
the root that corresponds precisely to the requested range (which is the
node that will be returned by frame_range), as per the following diagram:

Uninitialised Partially

α · [a] : [int32] Uninit. Totally

α : [int32] a : int32

α[0] : int32 subseq(α, 1, |α| − 1)

0 4c

0 4(s+ 1) 4c

0 4s 4(s+ 1)

0 4 4s

Next, the content of the node that is corresponding to the requested
range is set to NotOwned Totally, that is, the array is effectively consumed:

Uninitialised Partially

NotOwned Totally Uninit. Totally

0 4c

0 4(s+ 1) 4c

and, finally, the root node of the tree is updated accordingly:

NotOwned Partially

NotOwned Totally Uninit. Totally

0 4c

0 4(s+ 1) 4c

138 gillian

12.5 Symbolic block trees: fixes for bi-abduction

Recall that automatic UX specification synthesis, presented in §7.3,
is an analysis offered by tools implemented on top of Gillian. To be
enabled, this analysis requires the corresponding symbolic memory
model to be compatible with under-approximation, and to expose fixes
that can be used to extend the state when a missing outcome occurs.

Symbolic block trees are also designed to make fixes easy to infer
in most cases. In particular, when a resource is missing from the
state, the frame_range function will most commonly return a node of
the NotOwned Totally kind. If this happens when performing a load
operation at address p and using the τ chunk, the fix simply consists of
producing the points-to predicate p ↦→τ v, where v is a fresh symbolic
value of the appropriate type.

More complex cases can arise when only part of the returned range is
missing, in which case the frame_range function will return a node of the
NotOwned Partially kind. Gillian-C currently does not produce fixes
for partially missing resource, as they are rare in practice. However, it
is possible to improve the current implementation to produce a fix by
identifying the missing part of the range and producing arrays of bytes
of the appropriate length.

Drawbacks of using C#minor Gillian-C uses CompCert to compile C
to the C#minor intermediate language, and then compiles C#minor to
GIL6. Unfortunately, C#minor erases most of the type information of 6 The front-end of Gillian-C is

presented in more detail in the next
chapter.

the original C program, together with the distinction between pointers
and integers. When fixing a missing error of loading a value of chunk
in64, Gillian-C must then propose three fixes, producing either a value
of type long, or a valid pointer, or NULL.

This behaviour is not ideal, as it leads to the generation of unused
specifications, and can cause an explosion in the number of generated
specifications. To mitigate this issue, Gillian-C currently implements
heuristics that attempt to distinguish between int64 chunks, and a new
ptr chunk introduced for this purpose. Both of these chunks behave in
the exact same way for all purposes except the inference of fixes. The
int64 chunk is used to detect that a fix should be produced for a value
of type long, while the ptr chunk is used to detect that a fix should be
produced for a valid pointer or NULL.

Chapter 13

The Gillian-C front-end

In the previous chapter, we have presented the symbolic state model
of Gillian-C, which constitutes the main component of the Gillian-C
back-end, together with the primary operations it exposes and the
associated basic core predicates.

In this chapter, we focus on the front-end of Gillian-C, which is
responsible for translating C code into GIL. We also touch on our C
assertion language and its compilation into GIL logic annotations.

13.1 Compiling C code

The Gillian-C front-end is based on the CompCert certified compiler,
which compiles C code into an low-level structured intermediate lan-
guage called C#minor (read: “C sharp minor”). C#minor is the second
intermediate language of CompCert1. CompCert first translates C2 1 Leroy, The CompCert C Compiler,

2023 [Ler23]
2 Technically, the subset of C it
supports, called “CompCert C”

into a high-level intermediate language called Clight, removing expres-
sion side-effects and simplifying various forms of loops into a uniform
loop structure. Clight is then translated into C#minor, drastically sim-
plifying expressions, further simplifying loops, and eliminating types.

Gillian-C makes use of a specially-packaged version of CompCert
that has been modified to work as a library and expose the appropriate
API. This avoids the need to write a printer and parser for C#minor,
reducing the complexity of the front-end and the chance of errors.

13.1.1 C to C#minor translation

Figure 13.1 shows an example translation of a simple C function into
C#minor by CompCert. The C function, on the left, takes a pointer
into an array of integers, and increments the pointer until it finds the
value 0 in the array. It then returns the pointer to that value. The
corresponding C#minor code, on the right, deserves some explanation.

1 int *test(int *p) {
2 while (*p > 0) {
3 p++;
4 }
5 return p;
6 }

1 "test"(’p’) : long → long 1

2 {

3 loop { 2

4 if (int32[’p’] > 0) 3 {
5 /*skip*/;
6 } else {

7 exit 1; 4
8 }

9 ’p’ = ’p’ +l 4LL *l longofint 1; 5

10 }
11 return ’p’;
12 }

Figure 13.1: Translation of a sim-
ple C function (on the left) into
C#minor (on the right) by Com-
pCert.

First, note that high-level type information is erased in C#minor.
The function signature 1 shows that the function receives a parameter

140 gillian

of type long and returns a value of the same type: C#minor has erased
the distinction between pointers and integers. Then, the while loop
has been simplified to an infinite loop 2 , with an explicit if-statement
to check the condition 3 , and an exit statement to break the loop
4 when the condition is false. The exit statement receives a single
parameter indicating how many outer blocks to break out of.

In C, the guard of the while loop is evaluated by dereferencing the
pointer p and comparing its value to 0. In C#minor, the dereference is
performed using an explicit load operation int32[’p’], using the memory
chunk int32 and the pointer contained by the local variable p.

The loop body, a simple increment of the pointer in C, is translated to
an explicit update of local variable p 5 . Pointer addition is performed
by explicitely adding 4 (the size of an integer on the used architecture)
times the value of the summand to the pointer (here, 1). Note that
the operators +l and *l are explicitely typed to apply to values of type
long, and that casting between basic types is explicitly performed using
unary operators, such as longofint.

While this function does not make use of structures, note that field
access in C#minor is also performed through explicit pointer arithmetic.
For example, in the structure struct s { int x; long y; }, the address of
the field y of a pointer p is obtained through ’p’ +l 8LL, since field y is
at an offset of 8 bytes from the beginning of the structure.

13.1.2 C#minor to GIL translation

We continue our example by showing the translation of the C#minor
code from Figure 13.1 into GIL in Figure 13.2. Firstly, note that
GIL does not have structured control flow and uses unconditional and
conditional goto statements to jump to labels. The load operator is
translated to a call to the mem_load action of the state model. The action
is given the chunk ("int32") in string form, together with the address
to load from. In GIL, pointers are represented as lists containing two
elements, the location and the offset, which are destructed using the
list access operator l-nth. The result of loading is stored in a temporary
local variable gvar__0.

In our GIL translation, values are also encoded as lists of two
elements, where the first element is a string capturing the type of
the value (e.g. "int"), and the second is the value itself. This is an
unfortunate necessity; in particular, the type information preserved
in C#minor is not sufficient and requires of us to encode this form of
dynamic type checking into the GIL program.

Other operators, such as longofint, l* and +l are also encoded as calls
to internal GIL functions performing the corresponding operation. We
provide more details on internal functions shortly.

13.1.3 Internal functions and the Gillian-C runtime

As can be seen in the above example, the GIL code generated by the
front-end makes use of a number of internal functions. At runtime,
during all of the supported analyses, Gillian is able to symbolically
execute these functions and reason about their effects without requiring

the gillian-c front-end 141

1 proc test(p) {
2 loop0: gvar__0 := [mem_load]("int32", l-nth(p, 0i), l-nth(p, 1i));
3 gvar__1 := "i__binop_cmp_gt"(gvar__0, ["int", 0i]);
4 gvar__2 := "i__bool_of_value"(gvar__1);
5 goto [gvar__2] then0 else0;
6 then0: skip;
7 goto endif0;
8 else0: goto blockend0;
9 endif0: skip;

10 gvar__3 := "i__unop_longofint"(["int", 1i]);
11 gvar__4 := "i__binop_mull"(["long", 4i], gvar__3);
12 gvar__5 := "i__binop_addl"(p, gvar__4);
13 p := gvar__5;
14 blockend0: skip;
15 ret := p;
16 return
17 };

Figure 13.2: Translation of the
C#minor code in Figure 13.1 into
GIL.

specifications. Gillian-C currently makes use of 93 internal functions,
performing binary and unary operations, as well as some primitive
operations such as global variable access. We also use internal functions
to encode built-in standard library functions, such as malloc or memmove.

Let us inspect one particular internal function, i__binop_cmplu_lt,
which compares two unsigned long integers, returning 1 if the first is
less than the second, and 0 otherwise. To explain its implementation,
we first present a simplified3 Coq definition of the comparison operator 3 We specialize the code to the

operator and architecture at hand.in the mechanised CompCert semantics, given in Figure 13.3.

Definition cmplu_lt_bool (v1 v2: val): option bool :=
match v1, v2 with
| Vlong n1, Vlong n2 ⇒ Some (Int64.cmpu_le n1 n2)
| Vptr b1 ofs1, Vptr b2 ofs2 ⇒

if eq_block b1 b2
&& weak_valid_ptr b1 ofs1
&& weak_valid_ptr b2 ofs2

then Some (Int.le ofs1 ofs2)
else None

| _, _ ⇒ None
end.

Figure 13.3: Simplified Coq defini-
tion of the less-than operator for long
integers in CompCert.

The function cmplu_le_bool takes two values v1 and v2, and returns
Some true if the values can be compared, and v1 is less than v2, Some false

if the values can be compared, and v1 is greater or equal to v2, and None

if the values cannot be compared. The latter case corresponds to an
undefined behaviour in C, according to the C standard4. In particular, 4 International Organization for Stan-

dardization, ISO/IEC 9899:2018 -
Information technology – Program-
ming languages – C, 2018 [Int18]

it specifies that pointer comparison using < or > is only valid if the
pointers are part of the same object (that is, in the CompCert memory
model, if their blocks are equal), and that both pointers must either
be within the object, or one past the end of the object. In Coq, the
function eq_block checks that two blocks are equal, and weak_valid_pointer

checks that a pointer is either within the bounds of the object, or one
past the end of the object.

The internal function i__binop_cmplu_lt is implemented in GIL as in
Figure 13.4, and follows the same logic as the Coq definition. Note, in
particular, the use of the state model action mem_weakvalidptr to efficiently
check that the pointers are weakly valid.

Also note how type checking is performed in the GIL code: all values

142 gillian

proc i__binop_cmplu_lt(v1, v2) {
goto [(l-nth(v1, 0i) = "long") and (l-nth(v2, 0i) = "long")]

blon els;
blon: ret := "i__value_of_bool"(l-nth(v1, 1i) i< l-nth(v2, 1i));

return;
els: goto [

(typeOf(l-nth(v1, 0i)) = Obj)
and (typeOf(l-nth(v2, 0i)) = Obj)
and (l-nth(v1, 0i) = l-nth(v2, 0i))

] smbl unde;
smbl: t1 := [mem_weakvalidptr](l-nth(v1, 0i), l-nth(v1, 1i));

t2 := [mem_weakvalidptr](l-nth(v2, 0i), l-nth(v2, 1i));
goto [t1 and t2] cmpr unde;

cmpr: ret := "i__value_of_bool"(l-nth(v1, 1i) i< l-nth(v2, 1i));
return;

unde: fail[comparison]("Cannot compare non-comparable values")
};

Figure 13.4: Implementation of the
internal function i__binop_cmplu_lt
in GIL.

are expected to be pairs and checking for the first element to be a
string indicating the type, or a location (of type Obj) is used to perform
dynamic type checking.

13.2 Compiling C assertions

Since CompCert does not support an assertion language, we have
developed a simple assertion language designed for easy compilation
into GIL. Specifications and predicates are parsed separately from the
rest of the program, and are compiled into GIL logic annotations in a
pipeline separate from the code compilation.

In addition, the Gillian-C front-end generates a user-defined predicate
for each structure defined in the program. This predicate captures the
layout and basic types for the fields of the structure, including padding
between the fields. This enables the use of points-to predicates with
structure types in the assertions.

struct Array {
int *buffer;
size_t capacity;
size_t size

}

Figure 13.5: A dynamic array struc-
ture in C.

For instance, consider the array structure from the running exampe
of Chapter 11, provided again in Figure 13.5. It contains three fields:
a nullable pointer to an array of integers buffer, and two size fields
capacity and size.

pred struct_Array(+ptr, buffer, capacity, size) :
ptr == [#b, #o] *
((#b, #o) -int64-> buffer) * is_ptr_or_null(buffer) *
((#b, #o + 8i) -int64-> capacity) * is_long(capacity) *
((#b, #o + 16i) -int64-> size) * is_long(size)

The generated predicate describes the layout of the Array structure
in memory and gives basic typing information: it states that an Array,
starting from the position given by the pointer ptr, occupies 24 bytes in
memory (8 + 8 + 8, given by the type annotation int64), with the first
8 bytes taken by buffer which is either a pointer or NULL, and the other
16 bytes taken by capacity and size, both of which are of type long.

Chapter 14

Evaluation

The three analyses exposed by Gillian-C have been extensively evaluated.
First, we have used the Collections-C library1, an open-source library 1 Panić, srdja/Collections-C, 2024

[Pan24]of generic data-structure for C programs, to evaluate both whole-
program symbolic testing and UX specification synthesis. Second, we
have verified the section of the AWS Encryption SDK for C2 that 2 Amazon Web Services, aws/aws-

encryption-sdk-c, 2024 [Ama24b]implements parsing of the encryption header3. In this chapter, we
3 Amazon Web Services, AWS
Encryption SDK message format
reference - AWS Encryption SDK,
2024 [Ama24a]

report on the results of these evaluations. The performance results
provided in Table 14.1 have been obtained on a MacBook Pro 2024
with an Apple M4 Max chip and 128Gb of RAM, and all the other
performance results MacBook Pro 2019, with a 2.3GHz 8-Core Intel
Core i9 processor and 16GB of RAM.

14.1 Collections-C

Collections-C4 is a real-world data-structure library for C with 2.7K 4 Panić, srdja/Collections-C, 2024
[Pan24]stars on Github. The version we analyse5 has approximately 5.2K lines
5 Commit hash: 584e113e, December
2019, when the case study was first
performed.

of code and uses C-specific constructs and idioms including structures
and pointer arithmetic. The data structures it provides include, for
example, arrays, lists, treetables, hashtables, ring buffers and queues.

Library Tests GIL Cmds Gillian-C Time CBMC Time CBMC S/T/F

array 21 109,290 16.61s 131.07s 18/2/1
deque 34 106,737 29.2s 340.78s 29/5/0
list 37 730,655 31.60s 172.55s 35/2/0
pqueue 2 15,726 1.99s 2.53s 0/0/2
queue 4 39,828 3.63s 4.91s 4/0/0
rbuf 3 27,284 2.66s 3.55s 3/0/0
slist 37 325,383 32.37s 47.39s 37/0/0
stack 2 5,211 1.61s 2.19s 2/0/0
treeset 6 108,583 5.59s 235.93s 2/4/0
treetbl 13 618,326 12.68s 585.00s 0/13/0

Total 159 2,097,023 137.95s 1525.90s 130/26/3

Table 14.1: Results of whole-
program symbolic testing of
Collections-C, by CBMC and
Gillian-C. We used CBMC 5.95.1
with the following arguments:
--bounds-check --pointer-check
--div-by-zero-check
--pointer-primitive-check
--havoc-undefined-functions
--unwind 10 --os macos
--arch x86_64 --function main
--drop-unused-functions

14.1.1 Whole-program symbolic testing

We wrote an extensive symbolic test suite for Collections-C, with results
shown in Table 14.1. We report, per data structure: (1) the number of
symbolic tests; (2) the number of executed GIL commands; (3) the
obtained testing times for CBMC; (4) the obtained testing times for
Gillian-C; (5) the testing times for CBMC; and (6) The number of
successful Success/Timeout/Failure with CBMC (all tests pass with
Gillian-C). The tests were executed on the same machine, and CBMC

144 gillian

was passed a set of arguments that should provide similar guarantees
to those of Gillian-C, apart from the detection of uninitialised memory
access, which CBMC does not support. Note that the times reported
for CBMC include the time spent on tests that timed out.

Performance and comparison with CBMC. Since all the Gillian-C
tests run in at most 1.2 seconds, we gave CBMC a timeout of 45s.
Using this value, CBMC times out on 26 out of the 161 symbolic tests.

Figure 14.1: Survivor plot for the
whole 45s duration

Figure 14.2: Survivor plot for the
first 1.2s, until Gillian is done

Because of timeouts, Table 14.1 is difficult to read. To overcome
this issue, we draw survivor plots in Figures 14.1 and 14.2, providing a
more fine-grained visual representation of the performance results. On
both plots, the x-axis represents the time in seconds, and the y-axis
represents the number of tests that have been completed by that time
by Gillian-C and CBMC. The plot on the left shows the results for the
full 45s duration, while the plot on the right zooms in on the first 1.2s,
which is the time it takes for Gillian-C to complete all the tests. By
the time Gillian-C finishes, CBMC has completed 94 out of 159 (60%)
tests. In addition, it can be seen that approximately 120 tests run in
CBMC almost as fast as in Gillian-C, while the remaining tests seem
to run much slower.

evaluation 145

The script for running the CBMC tests can be found on Github,
in the collections-c-for-gillian repository, together with concrete
test cases constructed from the counter-examples provided by CBMC
for each of the false positives.

CBMC failed to pass three symbolic tests that were successfully
checked by Gillian-C. Out of these three, one was a false-positive, and
two were due to a bug that was not caught by Gillian-C, revealing an
unsoundness in the tool due to a missing overflow check in internal
function that performs unsigned division. This confirms the nature of
Gillian-C as a prototype in comparison with the battle-tested CBMC.

While the results appear heavily favourable towards Gillian-C, they
should be taken with a pinch of salt. The symbolic tests were written
with Gillian-C in mind, and CBMC was only employed for comparison
after the test cases had been established. It is possible that some of
these tests are biased in favour of the Gillian-C engine.

Bugs found by Gillian-C Our testing has revealed the following issues,
which have been fixed by the maintainer of Collections-C6: 6 Ayoun, fix djb2 string hash func-

tion - Collections-C - Github, 2019
[Ayo19b]; Ayoun, remove the us-
age of cc_comp_ptr everywhere
- Collections-C - Github, 2019
[Ayo19e]; Ayoun, fix over allocation
of ring_buffers - Collections-C -
Github, 2019 [Ayo19c]; Ayoun, Fix
some tests in the list test suite
- Collections-C - Github, 2019
[Ayo19d]; and Ayoun, fix buffer over-
flow - Collections-C - Github, 2019
[Ayo19a]

1. a buffer overflow bug in the implementation of dynamic arrays,
caused by an off-by-one index;

2. usage of undefined behaviours (pointer comparison) that can lead
to buggy behaviours in the presence of compiler optimisations;

3. several bugs in the concrete test suite: in particular, comparing
freed pointers, unchecked function returns, and incorrect checks with
serendipitously correct values;

4. over-allocation in the ring-buffer data structure (allocating eight
times too much memory), but with correct behaviour of the associ-
ated functions7; 7 The over-allocation cannot directly

be detected through WPST. It was
detected by inspecting the logs
of execution that draw a visual
representation of the symbolic heap
trees. Writing in the ring-buffer
would always leave an uninitialised
leaf at the right of the tree.

5. a bug in the string hashing function for hashtables that could lead
to a performance loss.

14.1.2 Specification generation with bi-abduction

We have used Gillian-C to synthesise specifications for 364 functions of
the Collections-C library, producing 5846 specifications in 79.70 seconds.
We present the results in Table 14.2, which features, per data structure:
the number of associated functions; the number of corresponding GIL
instructions (GIL is the intermediate language used by Gillian); the
number of success and error specifications; and the analysis time. The
results have been obtained with the loop/recursion unrolling bound
sett to 3, and we believe that they are promising both in terms of
performance and number of specifications synthesised.

Examples of Generated Specifications We now give examples of
specifications generated by our bi-abduction on one function of the
array library. In Collections-C, an array structure contains a size and
a capacity, both of type size_t. Further, it contains an expansion factor,
which specifies how to increase array capacity when the array is full
and we need to add a new element. Finally, it contains a pointer to an
array of pointers to void, an artefact of the lack of polymorphism in C.

146 gillian

Library Fcts. GIL Inst. Succ. Specs Err. Specs Time (s)

array 45 1784 251 260 1.36
deque 47 2312 271 210 2.65
hashset 14 160 7 112 12.01
hashtable 28 1527 31 147 17.01
list 66 2977 454 615 5.63
pqueue 10 557 90 51 4.71
queue 16 85 133 67 1.96
rbuf 9 181 9 17 0.06
slist 52 2269 292 1873 31.79
stack 16 85 136 88 0.57
treeset 17 214 28 106 0.40
treetable 36 1601 144 276 1.51
other 8 139 14 11 0.03
Total 364 13891 1860 3833 66.62

Table 14.2: Aggregated results of
synthesising function specifications
for the Collections-C library with
unrolling bound set to 3.

The structure definition in the original implementation of the library
also contained 3 additional function pointers to allow for the users of
the library to provide custom implementations of the malloc, calloc
and free functions. As this is higher-order in nature8, to be able to 8 Gillian-C supports function point-

ers, but at call site, the function
pointer must be statically resolvable
to a concrete function (in the current
symbolic execution branch).

perform the analysis we removed these pointers from the structure and
replaced any calls to these functions with their stdlib counterparts. We
performed similar changes to any other structure containing allocator
function pointers. The approach of Infer:Pulse to this issue is to
essentially havoc the return value and the pointer arguments; we could
have taken that approach as well.

typedef struct array_s {
size_t size;
size_t capacity;
float exp_factor;
void **buffer;
// Modified to remove
// allocator pointers.

} Array;

cc_enum array_get_at(
Array *ar,size_t index, void **out

)
{

if (index >= ar→ size)
return CC_ERR_OUT_OF_BOUND;

*out = ar → buffer[index];
return CC_OK;

}

The function array_get_at which retrieves an element from a specific
index in the given array at address ar; if the index is within the array’s
bounds, it places the element’s address into the output parameter
out and returns the CC_OK success code, otherwise, it returns a code
signalling an out-of-bounds error. Gillian generates 9 specifications
for this function, 4 successful and 5 erroneous ones. In Table 14.3,
we detail 2 successful and 1 erroneous specification, given in readable
high-level syntax, using field notation instead of explicit offsets and
eliding type annotations from points-to assertions as they are not the
focus of this discussion. Recall also that variables in the pre-condition
that are not formal arguments are implicitly universally quantified.
In all three specifications, we highlight in red the fragments that are
modified between the pre- and the post-condition. We also highlight in
purple some extraneous conditions bi-abduced by the Gillian-C engine,
in the form of _ = NULL, which we discuss shortly.

Spec 1 corresponds to a successful execution of the function: the size
check passes, and the accessed cell and the out pointer are properly
allocated. The content pointed to by the out pointer is overridden

evaluation 147

Spec 1:
Successful

access

[︂
ar.size ↦→ s ∗ ar.buffer ↦→ s ∗ (s+ index) ↦→ v ∗ out ↦→ o ∗ o = NULL

]︂
cc_enum array_get_at(Array ∗ar, size_t index, void ∗∗out)[︄

Ok : r.
ar.size ↦→ s ∗ index < s ∗ ar.buffer ↦→ s ∗ (s+ index) ↦→ v ∗

out ↦→ v ∗ o = NULL ∗ r = CC_OK

]︄
Spec 2:
Graceful

out-of-bounds

[︂
out = NULL ∗ ar.size ↦→ s

]︂
cc_enum array_get_at(Array ∗ar, size_t index, void ∗∗out)[︂

Ok : r. out = NULL ∗ a.size ↦→ s ∗ index ≥ s ∗ r = CC_ERR_OUT_OF_BOUNDS
]︂

Spec 3:
NULL

dereference

[︂
ar = NULL ∗ out = NULL

]︂
cc_enum array_get_at(Array ∗ar, size_t index, void ∗∗out)[︂

Err : r. ar = NULL ∗ out = NULL ∗ r = ”segmentation fault”
]︂

Table 14.3: Examples of specifi-
cations generated by Gillian-C’s
bi-abduction.and the function returns CC_OK. Note the minimal footprint, in

that the function requires only the size and buffer fields of the
structure and therefore only those fields are bi-abduced.

Spec 2 corresponds to a case where the size field of the array structure
indicates that the accessed index is out of bounds. The library
gracefully handles this by returning the appropriate error code.

Spec 3 corresponds to the case where the input pointer equals NULL,
which triggers a NULL dereference, which Gillian-C detects as an
error. This spec is perhaps the most important, as it is the one
which, when propagated through the codebase by function calls,
would allow a front-end that can filter true bugs to detect an issue.

On Specification Duplication Above, we presented 2 out of the 4
successful specifications generated by Gillian-C; in the other two, the
conditions highlighted in purple would be of the form _! = NULL. This
duplication is an unfortunate by-product of how the state model of
Gillian-C currently encodes values in its symbolic heap and the fact
that type information lost in compilation from C to GIL: bi-abducing
the "shape" of the value (NULL, or not NULL) becomes necessary
to preserve memory well-formedness. This phenomenon leads to an
explosion in the number of generated specifications, especially when
many different memory cells containing pointers are accessed in a
row. In particular, Collections-C exposes several iterator structures
composed of many pointers, such as slist_zip_iter, hashtable_iter and
hashet_iter. For each of these structures, the library also exposes an
initialiser function, which assigns each field one by one, leading to a
path explosion. In fact, 73% of the execution time in bi-abduction is
spent on 3 of the 363 functions, yielding 1640 specifications.

As part of an internship at AWS, the author of this manuscript im-
plemented an alternative front-end for Gillian-C based on CBMC9, with 9 The goal was to study the potential

of Gillian-C as an alternative back-
end to Kani, a Rust bounded model
checker based on CBMC. While the
repository is open-source [Ayo22],
further results of this evaluation are
not public.

an improved state model that could make use of the type information
preserved by this new front-end and which encoded symbolic values
in memory in such a way that this limitation was effectively lifted.
However, we cannot run bi-abduction with this improved back-end as
it does not implement fixes; the reason for this is that it was developed

148 gillian

for comparison with CBMC, which does not perform bi-abduction.

14.2 The AWS Encryption Header case study

The AWS Encryption SDK10 is an open-source encryption library built 10 Amazon Web Services, aws/aws-
encryption-sdk-c, 2024 [Ama24b]by Amazon Web Services that provides an interface for manipulation of

encrypted data using the standards supported by AWS. In particular,
messages are encrypted by the library and are then sent between the
client and the services. These encrypted messages have a well-defined
format11 and comprise a header, a body, and a footer. 11 Amazon Web Services, AWS

Encryption SDK message format
reference - AWS Encryption SDK,
2024 [Ama24a]

As part of the evaluation of Gillian-C and Gillian-JS, we verified
the modules of the C and JS SDKs that are responsible for parsing the
header of the encrypted messages. To do so, a single pure abstraction
was written in GIL that describes the format of the header, and two sets
of separation logic specifications were written for C and JS using their
respective state models and the language-agnostic pure specification.
Here, we only report on the results of the verification of the C module;
more information on the verification of the JS module can be found in
the corresponding paper12. 12 Maksimović et al., “Gillian, Part

II: Real-World Verification for
JavaScript and C”, 2021 [Mak+21]

14.2.1 Description and specification

The AWS Encryption SDK message header is a sequence of bytes
(buffer) divided into sections, as illustrated in Figure 14.3; above each
section is its length in bytes.

Figure 14.3: Diagram of the Encryp-
tion Header structure.

Our approach is to abstract the header contents into a list and
formulate pure predicates that describe its structure in a language-
independent way. This allows us to then use the same abstractions
as part of further, language-dependent, abstractions for both C and
JS. Our design of the abstractions was informed by existing code
annotations found in the implementations, which describe simple first-
order properties of the code and, in the case of C, are checked by
CBMC in the AWS CI. However, these annotations are limited by the
expressivity of JS and C, particularly when it comes to reflecting on
the memory contents. Our predicates have no such limitations.

We narrow down our exposition to the encryption context, as it illus-
trates well the language-independent and language-dependent aspects
of our specification, and is also the section in which we discovered bugs
in both implementations.

evaluation 149

Pure specification of the Encryption Context The encryption context
(EC) is a sequence of bytes that describes a set of key-value pairs. Its
structure is given in the diagram in Figure 14.4.

Figure 14.4: Diagram of the Encryp-
tion Context structure.

The first two bytes represent the number of key-value pairs, denoted
by KC, and the rest describe the KC key-value pairs themselves. Keys
and values are represented by sequences of bytes and, as they are of
variable length, are serialised by first having two bytes that represent
the length, followed by that many bytes of the actual key or value;
we refer to this pattern as a field, and to a sequence of n fields as an
n-element. Then, a key-value pair is serialised as a 2-field element, and
all of the key-value pairs form a sequence of KC 2-field elements.

We specify the EC by building layers of abstraction, from fields to
elements to element sequences to the EC, each of which can either
be complete, incomplete (partial, but with correct structure), or mal-
formed (with incorrect structure). In the implementation, these are
specified separately and are joined together in appropriate over-arching
abstractions. Here, we focus on complete variants only.

The Field(buf, pos, fld, len) predicate, given below, states that
the buffer (list of bytes) buf, at index pos, holds a field with contents
fld (list of bytes) and total length len:

pred Field(buf, pos, fld, len) :
(0 <= pos) * (#rFL = sub(buf, pos, 2)) *
UInt16(#rFL, #fL) * (fld = sub(buf, pos+2, #fL)) *
(len = 2+#fL) * (pos+len <= |buf|)

This predicate uses the GIL operator sub(l, s, n), which returns
the sublist of list l starting from index s and of length n, and also
the UInt16(rn, n) predicate, which states that n is a 16-bit big-endian
interpretation of the raw 2-byte list rn.

The Element(buf, pos, fC, elem, len) predicate states that buffer
buf at index pos holds a sequence of fC fields, with contents elem (a
list of the appropriate field contents) and total length len. It is defined
similarly to a standard linked-list predicate, with the ‘link’ being the
fact that the list members are contiguous in memory.

pred Element(buf, pos, fC, elem, len) :
(fC = 0) * (0 <= pos) * (pos <= |buf|) * (elem = []) * (len = 0);
(0 < fC) * Field(buf, pos, #fld, #fL) * Element(buf, pos+#fL, fC-1, #rFs,
#rL) * (elem = #fld :: #rFs) * (len = #fL+#rL)

Next, analogously to the Element predicate, we define the
Elements(buf, pos, eC, fC, elems, len) predicate, which states that the
buffer buf, at index pos, holds a sequence of eC elements, each with fC

fields, with contents elems (a list of the appropriate element contents)
and of total length len. Finally, the EncryptionContext(buf, KVs)

150 gillian

Figure 14.5: Serialised Encryption
Context: language-independent pure
part (red) and language-specific
resource (green).

predicate states that the entire buffer buf is an EC with key-value pairs
KVs, with all of the keys being unique:
pred EncryptionContext(buf, KVs) : (buf = []) * (KVs = []);

(#rKC = sub(buf, 0, 2)) * UInt16(#rKC, #KC) * (0 < #KC) *
Elements(buf, 2, #KC, 2, KVs, #len) *
FirstProj(KVs, #Ks) * Unique(#Ks) * (2+#len = |buf|)

Next, we show how this pure specification of the EC can be connected
without modification to the state model; its connection to the JS state
model is elided and can be found in the corresponding paper.

Encryption Context in C The EC is serialised as a block in memory,
and is traversed using an AWS byte cursor. Using the auto-generated
struct_aws_byte_cursor predicate given in Chapter 13, we define
the aws_byte_cursor(cur, buf, c) predicate, stating that cur points
to a byte cursor which has access to an array starting from buf, and
holding contents c, making the length implicit:
pred aws_byte_cursor(cur, buf, c) :
struct_aws_byte_cursor(cur, #len, buf) * (buf = [#b, #off]) *
array(#b, #off, c) * (#len = |c|)

A serialised EC is then described as a byte cursor whose contents
represent the EC key-value pairs (cf. Figure 14.5, centre and bottom):
pred CSerEC(cur, buf, EC, KVs) :
aws_byte_cursor(cur, buf, EC) * EncryptionContext(EC, KVs)

Finally, we are able to specify the deserialisation function as follows:
{ empty_hash_table(ec) * CSerEC(cur, #buf, #EC, #KVs) }

int aws_cryptosdk_enc_ctx_deserialize(
struct aws_hash_table *ec, struct aws_byte_cursor *cur)

{ (ret = 0) * CDeserEC(ec, #KVs) * (#buf = [#b, #off]) *
array(#b, #off, #EC) * aws_byte_cursor(cur, #buf +p |#EC|, []) }

The specification states that the EC is deserialised into an AWS hash
table, whose keys and values directly correspond to the key/value pairs
of the EC, captured as follows, eliding the internal structure of the
hash tables for conciseness:
pred CDeserEC(ht, KVs) : valid_hash_table(ht, KVs)

It also states that the byte cursor that originally pointed to the EC ends
up shifted to the end of the byte buffer, exposing the array underneath
the CSerEC predicate.

14.2.2 Verification

Using Gillian-JS and Gillian-C, together with the specifications given
in the previous subsection, we verify full functional correctness of the

evaluation 151

header deserialisation module of the AWS Encryption SDK JS (~200loc)
and C13 (~950loc) implementations. In particular, we verify that the 13 Amazon Web Services, aws/aws-

encryption-sdk-c, 2024 [Ama24b]deserialisation of a complete header is correct, and the deserialisation of
an incomplete or a malformed header raises an appropriate error. Here,
we only report results about the C-related part of the verification.

Verification Effort and Performance The C verification took 3 person-
months: about 1 month for writing the pure specifications characteris-
ing the header format, and 2 months to verify the C code itself. The
first-order solver of Gillian was substantially improved to reason auto-
matically about complex operations on lists of symbolic length, which
are used to reason about the array content of the tree nodes in the
C memory model. We created a collection of language-independent
predicates and lemmas about their inductive properties (~1.2kloc) that
cover the project-specific AWS header, but also re-usable first-order
concepts such as list element uniqueness, projections of lists of pairs,
conversion from bytes to numbers, and conversion from raw bytes
to strings. Similarly, we also had to create language-dependent ab-
stractions and associated lemmas for the C manipulation of the AWS
message header (~1.2kloc). Finally, we had to: annotate the code with
specifications and loop invariants, with the latter often having more
than twenty components; manually apply lemmas to prove numerous
complex entailments; and manually unfold user-defined predicates at
times (the folding is automated) (~1.1kloc).

On our machine used to perform the experiments, the C verification
takes ~221s. Interestingly, this is substantially longer than the JS
verification (about 45s), in part due to the larger codebase, but mainly
due to the complexity of the implementation of the full C memory
model, which is able to reason about the heap at the byte-level, while
JS is more abstract.

Bugs found We discovered three bugs: one logical error; one undefined
behaviour; and one over-allocation.
• The deserialisation of the EC mishandled the case when there is

not enough data in the buffer to read it entirely, continuing to read
the next part of the header, the EDK, instead of reporting an error.
This allows some malformed headers to be parsed as well-formed14, 14 Ayoun, Correctly fail on invalid

aad length - aws-encryption-sdk-c -
Github, 2021 [Ayo21a]

potentially leading to security vulnerabilities.
• The function aws_byte_cursor_advance, when called with a NULL

cursor and a length of 0, resulted in NULL+ 0 being computed,
which is undefined behaviour, although not problematic for most
compilers15. 15 Ayoun, Undefined Be-

haviour corner case for
aws_byte_cursor_advance - aws-c-
common - Github, 2021 [Ayo21c]

• The deserialised EC was stored using aws_string, which extends C
strings with certain metadata. It is implemented using a structure
that includes a flexible array member. We discovered that string
creation, in the AWS C standard library, over-allocated this array by
8 bytes. It was detected because our (correct) predicate describing
aws_strings was not allowing the verification to go through16, 16 Ayoun, Small over allocation in

each aws_string - aws-c-common -
Github, 2021 [Ayo21b]

claiming that the expected bound of the block did not match the
actual bound of the block.

152 gillian

All of the bugs were (eventually) fixed by the maintainers of the
AWS SDK C library17. 17 The potential security issue was

fixed within two weeks, but the over-
allocation remained in the codebase
for more than 3 years.Verification: Caveats Our C verification is correct up to the following

caveats. First, we do not use the aws_byte_cursor_advance_nospec

function, which advances the byte cursor, but also uses complex
computation to protect against the Spectre bug. We instead use
aws_byte_cursor_advance, which has equivalent behaviour, as our
specifications are not expressive enough to capture this distinction.
Next, we axiomatise the functions of the AWS hash tables and array
list libraries, as their verification is of comparable complexity to the
entire deserialisation module. Finally, the AWS allocators of the C
implementation, which are passed into some of the functions, contain
pointers to memory management functions; this is higher-order in na-
ture. In the verification, we assume that those functions are malloc,
calloc, and realloc.

14.3 Limitations

While the results of the evaluation are promising, there still exist
several limitations that need to be mentioned. Importantly, these
limitations are not fundamental to the approach, but rather to the
current implementation of Gillian-C.

First, the support of language constructs is intrinsically limited by
the support of the CompCert front-end. While CompCert supports
a large subset of C, its support for some rare idioms is missing. For
instance, switch statements do not support leading commands, restrict-
ing the support for, e.g., Duff’s device. The complete list of features
unsupported by CompCert is available on the CompCert website18. 18 Leroy, The CompCert C Compiler,

2023 [Ler23]Next, Gillian-C does not soundly support floating point arithmetics,
and instead models floats as real numbers. This is a limitation of the
current implementation of Gillian’s core and could be lifted by using a
more expressive encoding of floating points using bit-vectors.

Next, Gillian-C does not support concurrency, in that its current
state model does not implement fractional permissions or any other form
of shared-memory reasoning. In addition, while all specifications used
are written in separation logic, and hence compatible with exclusive-
ownership concurrency, we have never experimented with it in Gillian-C.

Finally, Gillian-C does not support effective types, a feature of the
C standard that disallows arbitrary casting of pointers. This is a choice
that we made in order to better match the semantics of CompCert,
as, in practice, developers often make use of compiler flag that disable
this restriction, and those who don’t are likely to be unaware of the
consequences of arbitrary pointer casting. However, this could be
considered a limitation, as Gillian-C is unable to detect bugs that arise
from the misuse of effective types.

Chapter 15

Related work

There exists a wide variety of tools that can be applied to C code; here,
we focus on those that are able to perform similar analyses to those
offered by Gillian-C, and do not address in detail tools that employ
techniques such as sanitising,1, fuzzing2, and abstract interpretation3. 1 Nethercote et al., “Valgrind: a

framework for heavyweight dynamic
binary instrumentation”, 2007 [NS07];
and GNU GCC developers, Program
Instrumentation Options - GNU
GCC, 2024 [GNU24]
2 Haller et al., “Dowsing for over-
flows: a guided fuzzer to find buffer
boundary violations”, 2013 [Hal+13]
3 Cousot et al., “The ASTREÉ
Analyzer”, 2005 [Cou+05]; and
Kirchner et al., “Frama-C: A software
analysis perspective”, 2015 [Kir+15]

To our knowledge, there is no single tool that offers all three (or any
two) analyses provided by Gillian-C.

15.1 Whole-program symbolic testing

There are many mature symbolic execution tools for C4 which follows

4 Cadar et al., “KLEE: unassisted
and automatic generation of high-
coverage tests for complex systems
programs”, 2008 [CDE08]; Cadar et
al., “EXE: Automatically Generating
Inputs of Death”, 2008 [Cad+08];
Godefroid et al., “Automated White-
box Fuzz Testing”, 2008 [GLM08];
Godefroid et al., “Compositional
May-Must Program Analysis: Un-
leashing The Power of Alternation”,
2009 [GNR09]; and Ramos et al.,
“Under-Constrained Symbolic Execu-
tion: Correctness Checking for Real
Code”, 2015 [RE15]

the dynamic-concolic discipline pioneered by Dart5. Such tools pair

5 Godefroid et al., “DART: directed
automated random testing”, 2005
[GKS05]

up symbolic execution and concrete execution to allow the symbolic
execution to fall back to the concrete whenever it produces symbolic
formulae unsupported by the underlying constraint solver. While these
techniques make powerful bug-finders, they do not provide the same
bounded correctness guarantees as Gillian-C does in WPST mode.

The guarantees provided by Gillian-C are similar to those provided
by bounded model checkers like CBMC6. Unlike Gillian-C, CBMC

6 Clarke et al., “A Tool for Checking
ANSI-C Programs”, 2004 [CKL04]

performs symbolic compilation, where entire programs are compiled
into a single boolean SAT formula. This formula is then sent to an
SMT solver to check for satisfiability, and if the formula is satisfiable, a
counterexample is returned. The comparison between the two tools is
given in §14.1.1, but a more detailed evaluation is required to precisely
determine the relative strengths and weaknesses of each tool.

15.2 Compositional verification using SL

The history of compositional verification tools for C based on separa-
tion logic dates back to 2009 and coreCStar7; we focus on the more 7 Botinčan et al., “Separation Logic

Verification of C Programs with an
SMT Solver”, 2009 [BPS09]

contemporary tools, starting from VeriFast8, first published in 2011.
8 Jacobs et al., “VeriFast: A Powerful,
Sound, Predictable, Fast Verifier for
C and Java”, 2011 [Jac+11]

VeriFast VeriFast by default targets a semantics of C that is closer to
the C standard than that targeted by Gillian-C, with support for, e.g.,
effective typing. It also provides options for disabling such restrictions
and target a more relaxed semantics. VeriFast is also more mature and
battle-tested than Gillian-C: it has been used for a larger number of
case studies, including some that made extensive use of concurrency,
although none was larger in size than our AWS case study.

On the other hand, VeriFast does not provide the same level of au-
tomation as Gillian-C, aiming instead at performance and predictability.
The array push example, from §11.3, illustrates well the trade-off be-
tween speed and automation. On that example, Gillian-C is slower

154 gillian

than VeriFast but requires no annotations, while VeriFast requires 4
lines of annotation. When it comes to predictability, our experience
confirms that VeriFast is more predictable than Gillian-C. For example,
there were cases where removing an annotation would make a Gillian-C
proof go through substantially faster, as the annotation was working
against the built-in automation; this could not happen in VeriFast.

RefinedC RefinedC9 is a C verifier based on CompCert, targeting a 9 Sammler et al., “RefinedC: automat-
ing the foundational verification of C
code with refined ownership types”,
2021 [Sam+21]

semantics of C that is close to that of Gillian-C. Based on Lithium10,

10 Sammler, “Automated and foun-
dational verification of low-level
programs”, 2023 [Sam23]

it achieves the impressive feat of verifying C code semi-automatically
while producing foundational proofs that are checked by Coq. This
makes RefinedC proofs more trustworthy than that of Gillian-C and
also allows the user to wield the full power of an interactive theorem
prover for proving properties about the code. RefinedC, however,
requires roughly the same amount of annotations as VeriFast, but these
annotations are often much more complex than the ones required by
VeriFast or Gillian-C, as they require knowledge of the underlying Coq
proof; sometimes, the user is even required to write Coq code directly.
Finally, RefinedC is slower than Gillian-C, and has only been applied
to a small (~190 loc) case study adapted from real-world code.

CN CN, introduced after Gillian-C, is a tool based on the Cerberus
semantics, which is possibly the most accurate ISO C semantics avail-
able. Its extensive formalisation takes a different approach, formulating
verification as a refinement type-checking problem. Its primary aim
is predictability, even staying within the domain of decidable SMT
theories, and producing Coq statements that must be manually proven
by the user when the tool cannot prove them automatically. While
the amount of annotation is similar to VeriFast, CN seems to perform
slower than either Gillian-C or VeriFast in terms of speed speed. CN
also provides automation for the manipulation of random-access arrays.
To do so, however, CN takes an approach similar to Viper’s iterated
separating conjunction11, and hence does not provide automation for 11 Müller et al., “Automatic Verifi-

cation of Iterated Separating Con-
junctions Using Symbolic Execution”,
2016 [MSS16a]

byte-level reasoning. CN has been used to verify the pKVM buddy
allocator, which comprises 364 lines of complex C code.

VST The Verified Software Toolchain is a Coq-based separation-logic
verifier for CompCert C programs. The latest version uses a separation
logic based on Iris, and can therefore leverage the full expressivity of
Coq and Iris to write and prove specifications. In addition, the entire
toolchain provides end-to-end verification, from C to the generated
assembly code. However, the proof effort is highly manual, requiring
at least an order of magnitude more annotations than required by
semi-automatic tools.

15.3 Infer:Pulse

To our knowledge, Infer:Pulse12 is the only tool able to generate under- 12 Calcagno et al., “Infer: An Auto-
matic Program Verifier for Memory
Safety of C Programs”, 2011 [CD11];
and Le et al., “Finding real bugs
in big programs with incorrectness
logic”, 2022 [Le+22]

approximate specifications for C. It is actively used inside of Meta and
runs daily on thousands of commit diffs. Furthermore, Infer:Pulse offers

related work 155

filtering of the generated specifications, allowing automatic detection
of bugs that are reachable from the current codebase (the so-called
manifest bugs). Gillian-C does not implement this functionality.

On the other hand, we were not able to find a detailed explanation
of how real-world memory is handled within Infer/Infer:Pulse, as all of
the papers treating the subject use a simple linear heap for illustrative
purposes. The memory model presented in this part, in contrast, offers
detailed insight into how Gillian-C handles the real-world memory
model of C and produces fixes for bi-abduction.

Part III
Gillian-Rust

Chapter 16

A challenge

Started making it, had a breakdown,
bon appétit.

James Acaster, 2020

The Rust programming language1 has seen rapid adoption in recent 1 Matsakis et al., “The Rust lan-
guage”, 2014 [MK14]years, particularly in the field of systems programming, to the point

where it has become only the second language to be adopted by the
Linux kernel2. The success of Rust is due to its rejection of false 2 Cook, [GIT PULL] Rust introduc-

tion for v6.1-rc1, 2022 [Coo22]dichotomies between safety and performance: its ownership type system
and borrow checker preserve memory safety while avoiding the need
for a garbage collector.

As Rust finds its way into more critical systems, the need for stronger
formal guarantees about the behaviour of Rust programs grows. In
response to this need, the past several years have seen the emergence of
a number of tools aimed at the verification of Rust programs, such as
Aeneas3, Creusot4 and Prusti5. These tools all leverage the properties 3 Ho et al., “Aeneas: Rust verification

by functional translation”, 2022
[HP22]
4 Denis et al., “Creusot: a Foundry
for the Deductive Verification of Rust
Programs”, 2022 [DJM22]
5 Astrauskas et al., “Leveraging rust
types for modular specification and
verification”, 2019 [Ast+19]

of the Rust type system to simplify verification, but all also share a
common limitation: they can only verify safe Rust code.

Although most Rust code is written in the safe subset of the lan-
guage, it is common for it to rely on unsafe code to interface with
the underlying operating system or to provide low-level abstractions.
In unsafe code, the programmer gains access to several ‘superpowers’,
such as the ability to dereference raw pointers, cast between types,
and even access (potentially) uninitialised memory. Unsafe code is an
essential part of Rust’s design, allowing new safe abstractions, such
as LinkedList<T> (the type of doubly-linked lists), to be implemented
efficiently in libraries. However, unsafe code also comes with greater
responsibility: the programmer is now responsible for ensuring that
unsafe code does not exhibit undefined behaviour (UB) and that the
corresponding APIs remain observationally safe. In addition, despite
representing a fraction of the total codebase, unsafe code is often the
most complex and error-prone part of a Rust program, making it the
most important to formally verify, which none of the above-mentioned
tools is able to accomplish.

In this part of the thesis, we propose a hybrid approach to end-
to-end Rust verification which, mirroring the differences between safe
and unsafe code, leverages Creusot for verification of safe code and a
novel instantiation of Gillian for Rust, cleverly dubbed Gillian-Rust,
for verification of unsafe code, which can be specified but not verified
by Creusot.

Understanding the substantial challenges that needed to be overcome

160 gillian

by the implementation of Gillian-Rust requires a background in the
foundational theory underpinning Rust. In 2018, Jung et al. published
RustBelt6, a theoretical framework that allows for semantic interpreta- 6 Jung et al., “RustBelt: securing the

foundations of the Rust programming
language”, 2017 [Jun+17]

tion of Rust’s ownership types using the higher-order separation logic
Iris7, thereby enabling reasoning about type safety. In 2022, the work 7 Jung et al., “Iris from the ground

up: A modular foundation for higher-
order concurrent separation logic”,
2018 [Jun+18]

on RustHornBelt8 extended RustBelt with the ability to reason about

8 Matsushita et al., “RustHornBelt:
a semantic foundation for functional
verification of Rust programs with
unsafe code”, 2022 [Mat+22]

functional correctness of unsafe Rust code, allowing for safe functions
implemented with unsafe code to be given first-order logic specifications
and providing the meta-theory that now underpins Creusot. However,
both RustBelt and RustHornBelt operate on λRust , a model of Rust
that makes many simplifying assumptions relevant to a foundational
formalisation and therefore cannot capture the intricacies of real Rust.
Moreover, RustHornBelt proofs are manually performed in Coq9, on 9 The Coq Team, The Coq Proof

Assistant, 2023 [The23a]code ported by hand from Rust to λRust , and little automation is
provided to alleviate the boilerplate of verification. As a result, while
blazing the trail for end-to-end functional correctness verification of
Rust programs, RustHornBelt cannot bring its approach to real-world
Rust programs.

More recently, RefinedRust10 demonstrated how the techniques 10 Gäher et al., “RefinedRust: A
Type System for High-Assurance
Verification of Rust Programs”, 2024
[Gäh+24]

developed in Refined-C11 could be adapted to RustBelt to reason about

11 Sammler et al., “RefinedC: au-
tomating the foundational verifica-
tion of C code with refined ownership
types”, 2021 [Sam+21]

functional correctness of Rust programs in a more automated way.
However, RefinedRust remains embedded in Coq and its automation
and performance are inherently limited by this choice. We argue that
in order for verification to tackle the volume of existing and future
unsafe Rust code, more efficient and scalable tooling is needed.

Challenge 1: Real Rust is really hard Rust is primarily a systems
programming language, and therefore comes with every associated
complication, some previously known from the large research effort
in C verification—e.g., low-level data representation, byte-level value
manipulation, and memory allocator manipulation—and some new—
e.g., exotically-sized types, such as zero-sized types, compiler-chosen
layouts (whereas C has a standardised layout), and polymorphism.

While these aspects of Rust are invisible to safe Rust code, they
become a proper concern when working with unsafe code. For example,
it is crucial for a verifier to reason generically over the possible memory
layouts of programs so that it could detect any potentially disallowed
memory operations. This makes the reuse of the existing Gillian-C
memory model difficult and requires development of new techniques
to reason automatically and efficiently about real Rust and the way it
represents objects in memory.

Challenge 2: Type safety, borrows, and raw pointers The notion of
type safety in Rust is much stricter than that found in languages like
C. Specifically, the responsibility of a safe function, even an internally
unsafe one, is not limited to its own body: it must ensure that no
fully-safe program calling it may trigger undefined behaviour. This
dramatically increases the complexity of integrating unsafe code into a
Rust program.

The main tool employed by Rust to guarantee safety is a strict

a challenge 161

and static ownership discipline, wherein each value must always have a
unique, exclusive owner. While this alone would be too restrictive, Rust
also provides mutable references (&κ

mutT) and shared references (&κT)
which may borrow ownership for a lifetime κ. However, even when
equipped with references, safe Rust is sometimes too restrictive and
prevents the implementation of types such as doubly-linked lists, where
each node is referenced by two pointers at any time (cf. Figure 17.1,
bottom left), breaking the exclusive ownership discipline. In such
cases, developers must resort to unsafe code in order to manipulate
raw pointers (∗mut T) which, unlike references, allow for unrestricted
aliasing and do not provide any safety guarantees.

This mixed use of raw pointers and safe references causes the task of
verifying type safety of unsafe code to (yet again) increase in complexity,
as it requires reasoning about lifetime-dependent safety invariants.

Challenge 3: Scaling safe and unsafe Rust verification, together
While unsafe code is used to perform some of the most complex and
primitive operations of Rust programs, it still remains a small fraction
of the total codebase12. Furthermore, safe Rust often uses many 12 Astrauskas et al., “How do pro-

grammers use unsafe Rust?”, 2020
[Ast+20]

advanced features, such as higher-order functions, which are eschewed
in unsafe code. In that setting, we believe that it would be extremely
challenging to build a tool that both has the required expressivity
for reasoning about unsafe code, which makes extensive unrestricted
use of raw pointers, and can, at the same time, reason efficiently and
automatically about the higher-level features used in safe Rust.

On the other hand, tools such as Creusot13 have demonstrated that 13 Denis et al., “Creusot: a Foundry
for the Deductive Verification of Rust
Programs”, 2022 [DJM22]

safe Rust verification can be performed with impressive automation
and simplicity, permitting reasoning about some of the most high-level
features of Rust14, but sacrificing the ability to handle unsafe code. 14 Denis et al., “Specifying and Ver-

ifying Higher-order Rust Iterators”,
2023 [DJ23]

Ideally, one would reuse such a tool for analysing safe code, and use
another, more adapted tool, for analysing unsafe Rust, splitting the
proof effort appropriately. This approach, however, requires both tools
to agree on the semantics of specifications given to Rust functions.
For example, if Creusot is used for safe code, the other tool has to
provide a faithful interpretation of Creusot’s specifications, which use a
simple-to-write yet complex-to-interpret prophetic assertion language.

Contributions In this part of the manuscript, we present a hybrid
approach to verification of Rust programs, which leverages the strengths
of specialised tools operating in unison to verify both safe and unsafe
Rust code, illustrated in Figure 16.1.

In particular, we combine Creusot, an existing tool for safe Rust ver-
ification, with Gillian-Rust, a novel proof-of-concept instance of Gillian
for the verification of unsafe Rust code. We manage the boundary
between the tools through a shared specification language that can
easily be interpreted into either Creusot or Gillian-Rust specifications.
To make this possible, Gillian-Rust implements and automates the
reasoning of RustBelt and RustHornBelt, which allows it to reason
about the prophetic specifications of Creusot.

We demonstrate the viability of our approach by verifying actual

162 gillian

Figure 16.1: Representation of
unsafe code in the Rust codebase.
The boundary between the tools is
managed by a shared specification
language that both tools are able to
interpret.

code from the Rust standard library—specifically, the LinkedList and
Vec types, along with several other case studies. Our approach performs
verification at least two orders of magnitude faster than prior works,
made possible by the use of symbolic execution and the efficient memory
model of Gillian-Rust.

Building Gillian-Rust on top of Gillian The symbolic state model
of Gillian-Rust is tailored to address the challenges of hybrid Rust
verification. It is, to this day, the most advanced state model ever built
for Gillian, leveraging the unique parametricity of the framework to
encode and automate complex reasoning usually performed in Iris.

This state model can be constructued as follows, where is the
product operator on state models introduced in Chapter 8:

SRust = GuardedPred(RustHeap Lft Obs Pcy)

Outline In Chapter 17, we give an overview of our hybrid approach.
In Chapter 18, we describe RustHeap, a symbolic heap model for Rust
capable of both layout-independent reasoning about Rust memory and
performing pointer arithmetic and bit-level operations. In Chapter 19,
we describe the lifetime context Lft and guarded predicate transformer
GuardedPred, demonstrating how to leverage Gillian’s unique exten-
sibility to encode concepts from the lifetime logic of RustBelt and
obtain a substantial degree of automation, enabling Gillian-Rust to
reason about type safety of mutable references. In Chapter 20, we
present the observation context Obs and the prophecy context Pcy,
a way of embedding within Gillian-Rust the ability to reason about
parametric prophecies as proposed by RustHornBelt. In Chapter 21, we
describe end-to-end verification of a safe-unsafe Rust program, elaborat-
ing on the interpretation of hybrid specifications as both Creusot and
Gillian-Rust specifications and the details of Gillian-Rust automation.
In Chapter 22, we evaluate Gillian-Rust by verifying type safety and
functional correctness of several Rust standard library types and their
safe clients, demonstrating the efficiency and scalability of our hybrid
approach. Finally, we discuss the current limitations of Gillian-Rust
in detail and provide a pathway towards overcoming these limitations
(Chapter 23), and place Gillian-Rust in the context of overall related
work (Chapter 24).

Chapter 17

The Gillian-Rust infrastructure

We present our hybrid approach in more detail, show how Gillian-
Rust can be used for proving a Creusot specification, and describe the
structure of Gillian-Rust as an instantiation of Gillian.

17.1 A hybrid approach: Creusot + Gillian-Rust

Figure 17.1: A high-level illustration
of the differences and connections
between the world of pure represen-
tations, observed by Creusot, and
the world of real representations,
observed by RustHornBelt and
Gillian-Rust.

The unmatched simplicity of Creusot specifications and the extent
of its proof automation come from the fact that its proofs do not
manipulate the real representation of objects, but an abstract, pure
representation instead. Take, for example, doubly-linked lists, which
are infamously difficult to implement in Rust, and equally infamous
for being difficult to specify without separation logic. Creusot, when
performing the proof for a piece of code which uses the Rust LinkedList

module, does not see its intricate representation but instead models
the linked list as a pure sequence of values. This approach, made
possible by the guarantees provided by the safe fragment of Rust,
sacrifices the ability to reason about the implementation of the LinkedList

itself, in exchange for an efficient encoding into SMT, a high degree of
automation, and no need for separation logic.

RustHornBelt provides a foundational argument for the validity of
this approach by connecting the real world to Creusot’s world of pure
representations. This is done by providing ownership predicates1 for

1 Ownership predicates for Rust
types were introduced in RustBelt,
but did not connect types to a pure
representation

each type T, which describe the safety invariant that the values of this

164 gillian

type must uphold and connect it to the associated pure representation
of type ⌊T⌋ (cf. Figure 17.1 (left)).

To verify all Rust code, including that which contains unsafe blocks,
we propose a hybrid approach where Creusot verifies all of the proof
obligations within its reach and delegates the verification of unsafe
code to another tool. Such a tool, however, does not yet exist, and
building it is a great application for Gillian. We therefore propose a
proof-of-concept called Gillian-Rust, which has the ability to perform
SL reasoning required for the verification of unsafe code, breaking the
abstraction and manipulating ownership predicates directly.

A keystone to this approach is the ability to systematically encode
Creusot specification, written in an assertion language called Pearlite,
into the assertion language of Gillian-Rust, which we dub Gilsonite, as
represented in Figure 17.1 (right), and detailed in §21.2.

17.2 Example usage of Gillian-Rust

Doubly-linked lists are notoriously difficult to implement in Rust: the
presence of back edges violates the strict ownership discipline imposed
by the use of mutable references. Instead, one must use mutable raw
pointers (cf. Figure 17.2, left), making doubly-linked lists a canonical
example of a data structure requiring an unsafe implementation. On
top, the non-trivial invariant that the list can be integrally traversed
in both directions without cycles must be upheld, as otherwise the
function in charge of disposing the list would visit a node twice, thereby
performing a double-free.

We show the process of using Gillian-Rust to prove a Pearlite speci-
fication for the push_front function of the Rust standard library, which
in-place adds an element to the front of a LinkedList.

struct Node<T> {
elem: T,
next: Option<NonNull<Node<T>>>,
prev: Option<NonNull<Node<T>>>,

}
struct LinkedList<T> {

head: Option<NonNull<Node<T>>>,
tail: Option<NonNull<Node<T>>>,
len: usize,

}

impl<T : Ownable> Ownable for LinkedList<T> {
type ReprTy = Seq<T::ReprTy>;
#[predicate]
fn own(self, repr: Self::ReprTy) → Gilsonite {
gilsonite!(

dllSeg(self.head, None, self.tail, None, repr) *
(self.len == repr.len()))

}
}

Figure 17.2: LinkedList structure
definition and its ownership predi-
cate. The dllSeg predicate is given in
§18.3.Implementing Ownable The first step is to connect the real Rust

structure to its pure representation used by Creusot. To do so, users
must implement the Ownable trait2 and define: the type of its repre- 2 A trait is, akin to a Haskell type-

class, a form of interface describing a
list of items that can be implemented
for a type.

sentation, ReprTy (denoted by ⌊·⌋ in mathematics); and the ownership
predicate, fn own, which takes two parameters, the structure itself (self)
and the representation.

In the case of LinkedList<T>, its representation type is a sequence, of
which each element has type T::ReprTy. Note that, in order for this type
to be properly defined, T itself must implement Ownable, a constraint
specified using a trait bound (the ’: Ownable’ part in <T : Ownable>).

the gillian-rust infrastructure 165

#[show_safety] // Expands to:
// #[specification(
// requires { self.own(_) * e.own(_) }
// ensures { result.own(_) }
//)]
fn push_front(&mut self, e : T) {

// Implementation
}

#[requires(self@.len() < usize::MAX@)]
#[ensures((^self)@ == (*self).prepend(e))]
fn push_front(&mut self, e : T) {

// Implementation
mutref_auto_resolve!(self)

}

Figure 17.3: The type safety (left)
and Pearlite (right) specifications for
push_frontType safety Once the ownership predicate is defined, we can already

verify type safety of a function by simply adding the #[show_safety]

attribute on top. This attribute expands to a Gilsonite specification
which requires all input parameters to be owned when entering the
function, and ensures that the resulting value be owned when the
function returns. The type safety specification (cf. Figure 17.3, left)
corresponds to that proposed in RustBelt, which also requires a lifetime
token in the pre- and post-condition. This token is added automatically
to the pre- and post-condition by the Gillian-Rust compiler, and Gillian-
Rust is able to prove this specification fully automatically.

Functional correctness Next, our goal is to specify that the function
actually performs the desired operation. This can be elegantly done in
Pearlite (cf. Figure 17.3, right), by describing the update performed
on the sequence which represents the LinkedList: when the mutable
reference expires, the representation will be the input sequence with
the element prepended.

Pearlite, inspired by RustHorn3, uses prophecy variables and the 3 Matsushita et al., “RustHorn:
CHC-based Verification for Rust
Programs”, 2021 [MTK21]

final value operator ^ in order to specify such a property. RustHornBelt
provides the theory underpinning this, and we provide a high-level
description of the corresponding proof techniques as well as their im-
plementations and automation strategies in Gillian-Rust in Chapter 20.
Using our systematic encoding, we can translate this Pearlite specifica-
tion into a Gilsonite specification: this particular translation is given
in §21.2, together with further explanations. Finally, after adding a
single line which triggers a semi-automatic tactic during verification,
Gillian-Rust is able to perform the proof for this specification.

Chapter 18

Reasoning about the real Rust heap

While RustBelt provides the theoretical framework on which our work
is founded, it intentionally avoids the challenge of reasoning about the
real Rust heap by instead defining an operational semantics and type
system for λRust , a small lambda-calculus with a simplified memory
model. For example, in λRust , all integers are unbounded and take
one cell in memory, ignoring the 12 different primitive machine integer
types offered by Rust, which take between 1 and 16 bytes in memory.

The literature, from previous work on other systems programming
languages such as C, already has ways of reasoning about machine
integers, but Rust also comes with challenges currently undealt with. In
particular, while C comes with a specific algorithm that describes and
decides on the layout of structures in memory and allows for arbitrary
pointer arithmetic to access structure fields, the Rust compiler provides
fewer guarantees, reserving the right to re-order fields and adjust
padding between them. Rust also has features that do not exist in
C, such as enums (tagged unions), which offer even fewer guarantees,
as Rust may manipulate fields arbitrarily to reduce the overall size of
the structure without affecting expressivity, in a process called niche
optimization.

Until now, Rust verification tools have been working around these
issues. For example, Prusti encodes structures using the object-oriented
memory model of Viper, allowing efficient field access but preventing
reasoning about pointer arithmetic, and Kani compiles Rust to a C-like
representation by choosing a specific layout for each structure, dropping
the guarantee that a verified program would be correct had the compiler
made different layout choices authorised by the language1. 1 Group, Structs and Tuples - Mem-

ory Layout - Unsafe Code Guidelines,
2023 [Gro23]

In this chapter, we describe the solution provided by Gillian-Rust,
which does a best-effort attempt at maintaining abstraction—hence
preserving field-access efficiency—while still allowing for pointer arith-
metic by leveraging Gillian’s ability to implement custom heap models.
We show how to encode addresses so that they are layout-independent;
describe a novel state model, RustHeap2, capturing the representation 2 In fact, we present the state model

of RustBlock, which can be used to
construct the heap as

RustHeap = PMap(Loc,RustBlock)

using the partial map construction
from Chapter 8.

of objects in the heap that allows for efficient automated reasoning;
and present the points-to core predicate, which allows for specifying
the Rust heap in Gillian-Rust.

18.1 Layout-independent memory addresses

The representation of addresses in Rust constitutes a challenge on its
own. Ideally, one would prefer to reuse the one used by Gillian-C,
inspired by CompCert3 and also used in RustBelt, where an address

3 Leroy et al., “The CompCert
Memory Model, Version 2”, 2012
[Ler+12]

is a pair (l, o) ∈ Loc × N of an object location (identifying a unique

168 gillian

allocation) and an offset. However, because of the above-mentioned
challenges, this representation is insufficient, as structure field access
may correspond to different offsets depending on the compiler-chosen
layout.

To overcome this issue, Gillian-Rust modifies the encoding of offsets
by using sequences of projection elements forming a projection (we
reuse the compiler’s internal terminology) instead of a natural number.
Specifically, a projection element represents either: an offset of e times
the size of the type T, where e is a symbolic integer, denoted by +Te; or
the offset of the i-th field of a structure (relative w.r.t. the beginning
of the structure), denoted by .Ti; or the relative offset of the i-th field
of the j-th variant of an enum, denoted by .T.ji.

l ∈ Loc e ∈ Z i, j ∈ N
pr ∈ ProjE ::= +Te | .Ti | .T.ji
a ∈ Addr ::= (l, pr⃗)

This representation makes the interpretation of a symbolic address
effectively parametric on the layout chosen by the compiler: given a
layout which provides a concrete offset for each field of a structure
or an enum, and a size to every type, each projection element can be
interpreted as a symbolic natural number, and each projection as the
sum of the interpretations of its elements.

18.2 Objects in the Rust symbolic heap

Our goal is to represent objects in the symbolic heap in a way that
would enable us to efficiently resolve field accesses and perform only
layout-independent pointer arithmetic. To this end, we propose a
hybrid tree representation featuring two kinds of nodes: structural
nodes, which represent a region of memory for which we know the
structure but not necessarily the layout (such as Rust structures or
enums), and on which no pointer arithmetic is allowed; and laid-out
nodes, which are known to have an array-like layout and admit certain
pointer arithmetic. For clarity of presentation, we provide a high-level
description of heap objects, focussing on the main functionalities and
insights.

Structural nodes Structural nodes are annotated with their type, and
may be one of the following:
• a single node containing either: the special value Uninit, repre-

senting uninitialised memory, which is illegal to read; the special
value Missing, representing memory that has been framed off; or a
symbolic value;

• a tree representing a structure, consisting of: a root (internal) node,
which holds no information; and children nodes, which represent its
fields; or

• a tree representing an enum with a concrete discriminant4, contain- 4 A symbolic enum (i.e., an enum
with a symbolic discriminant) would
be represented as a single node with
a symbolic value.

ing: an internal node holding said discriminant; and children nodes
representing the fields of the corresponding enum variant.

reasoning about the real rust heap 169

The types annotating the nodes must be sized (that is, must have a
size known at compile-time, chosen by the compiler5), thereby providing 5 In contrast to unsized types, such

as the slice type [T], for which the
size is only known at run-time.

an interpretation for each node. The load and store primitive operations
are provided in the interface of the symbolic heap and must ensure that
the validity invariants6 of values written in memory are maintained (for 6 Jung, Two Kinds of Invariants:

Safety and Validity, 2018 [Jun18]example, that booleans are represented only by the bit-patterns 0b0 and
0b1). They are also responsible for enforcing other important aspects
of the Rust semantics, such as that loading a value from memory in
the context of a move will deinitialise that memory.

In Figure 18.1, we give an example of a structure S and its structural
node representation, comprising an internal node annotated with type
S and two single-node children with respective values and types (x, u32)

and (y, u64). The type of the left child, for example, indicates that
it represents a region of 4 bytes in memory, and that the symbolic
value x is an integer in the range [0, 232). We also show two potential
interpretations of a structural node for S, depending on the compiler-
chosen field ordering: the top interpretation is obtained when the
ordering is from-largest-to-smallest, and the bottom when the ordering
is from-smallest-to-largest, inserting the appropriate padding when
needed. This structural node in particular can only be navigated using
.S0 or .S1.

struct S { x: u32, y: u64 };

x

.0

y

.1

S

u32 u64

0
y

8

x

12 16

0

x

4 8
y

16

Figure 18.1: A structure S, its repre-
sentation as a structural node, and
two of its potential interpretations

Laid-out nodes While structural nodes facilitate efficient resolution
for a large majority of memory accesses, they are not a novel concept.
The novelty of our approach lies in combining structural nodes with
laid-out nodes, inspired by Gillian-C (Chapter 12), which describe a
region of memory with an array-like layout in the sense that it allows
for basic indexing pointer arithmetic. For example, Rust arrays, which
are at the core of the Rust vector type, are always laid out contiguously
such that the n-th element of an array of type [T;N] starts at offset
n ∗ size_of::<T>() w.r.t the beginning of the array, regardless of the
layout of the element itself. Similarly, any integer type, say u32, can
be seen as array-like as it is always represented by contiguous bytes in
memory.

v⃗ Uninit

0 k n

indexing type: T

isolate

v⃗ Uninit Uninit

0 k k + 1 n

indexing type: T

write

v⃗ Uninitv′
0 k k + 1 n

indexing type: T

Figure 18.2: Update of a laid-
out node corresponding to n ∗
size_of::<T>() bytes.A laid-out node is a pair composed of a sized type (called indexing

type) and a list of structural nodes each annotated with the range it
occupies in multiples of the size of the indexing type. This indexing
type is where Gillian-Rust diverges from Gillian-C. In C, all sizes are
known, and can be expressed as a symbolic number. In Rust, however,
the size of a type is not always known before compilation, and the
indexing type allows us to express the size of the elements in the laid-out
node in a way that is independent of the layout chosen by the compiler.

For example, Figure 18.2 (left) shows a laid-out node with indexing
type T and two structural nodes, the first carrying a symbolic list value

170 gillian

v⃗ occupying the range [0, k) (note that the k is symbolic), and the
second capturing uninitialised memory occupying the range [k, n), with
k < n.

When resolving pointer arithmetic, Gillian-Rust is able to automat-
ically destruct and reassemble laid-out nodes, allowing for arbitrary
range access and manipulation. For example, Figure 18.2 (middle) and
(right) show the process of writing a single value of type T at the k-th
offset; this corresponds to pushing at the end of a vector with suffi-
cient capacity. Gillian-Rust achieves this by first isolating the region
in which the newly added value is going to be written (Figure 18.2,
middle), splitting the second node into two, and then overwriting the
appropriate region (in this case, from k to k+1) with a structural node
corresponding to the added value (Figure 18.2, right), simplified for
this example to be a single node. Importantly, the indexing type does
not have to match the type of each individual sub-node. For example,
explicit calls to the Rust allocator API will always result in a laid-out
node with indexing type u8 (i.e., single bytes), but can be populated
with values of arbitrary other type T.

18.3 Specifying the Rust heap: the typed points-to core predi-
cate

We focus on the most important core predicate used to specify heap
shape with Gilsonite: the typed points-to predicate, a ↦→T v, which is
satisfied by a heap fragment starting from address a and containing
size_of::<T>() bytes, which together form a valid representation of the
value v. The remaining core predicates are only variations on this
theme and are used for specifying, for example, slices or potentially
uninitialised memory.

Unlike Gillian-C, the types used to annotate the points-to core
predicate can be arbitrarily complex. This is possible because we
compile GIL code from the mid-level intermediate representation of
Rust (MIR), which still has full type information. This is a significant
advantage, as it avoids performing several consumption and production
steps for a single structure, hence enhancing performance. It also allows
us to write a points-to predicate when the type of the value is a type
parameter, enabling support for polymorphism and generic types.

The separation logic induced by the core predicates can be used by
the verification engineer to specify a variety of predicates, pre-conditions
and post-conditions. For example, the typed points-to predicate is
enough to specify the ownership predicate for a doubly-linked list
(LinkedList):

JLinkedList<T>K(l, r) ≜ dllSeg⟨T⟩(l.head, None, l.tail, None, r) ∗ l.len = |r|
dllSeg⟨T⟩(h, n, t, p, r) ≜ (h = n ∗ t = p ∗ r = [])∨

(∃h′, v, z, r′. h = Some(h′) ∗ h′ ↦→Node<T> {v, z, p} ∗ JTK(v, rv) ∗
dllSeg⟨T⟩(z, n, t, h, r′) ∗ r = rv :: r′)

The doubly-linked-list-segment predicate, dllSeg, is well-known

reasoning about the real rust heap 171

from SL literature. It receives four optional pointers, h, n, t, and p, and
a sequence of values r. The pointers h and p represent, respectively, the
head and the tail pointer to the doubly-linked list, while n corresponds
to the next pointer of the tail node and p to the prev pointer of the
head node; both p and n equal None when the list segment represents
the entire linked list. The sequence r contains the values of the nodes
in the list, ordered left-to-right. This predicate can be reused in the
Rust context with only one adaptation: the value of each node must
be owned by the list (captured by the JTK(v, rv) ownership predicate),
effectively making the predicate parametric on the type of the values
that the list holds. The predicate can be defined using Gilsonite as
follows; note that the → arrows need not be annotated with the type,
as type inference is performed by the Rust compiler:

#[predicate]
fn dll_seg<T: Ownable>(h: Option<NonNull<Node<T>>>, n: Option<NonNull<Node<T>>>,

t: Option<NonNull<Node<T>>>, p: Option<NonNull<Node<T>>>, r: Seq<T::ReprTy>) {
gilsonite!(h == n * t == p * r == Seq::empty());
gilsonite!(exists hp, z, v, rv. h == Some(hp) * hp → Node { next: z, prev: p, element: v } *

v.own(rv) * dll_seg(z, n, t, h, r.prepend(rv)))
}

Chapter 19

Automating reasoning about mutable borrows

The handling of mutable borrows is one of the main challenges when
trying to specify and verify Rust programs in fully-safe and unsafe
contexts alike. While RustBelt1 provides a theoretical framework for 1 Jung et al., “RustBelt: securing the

foundations of the Rust programming
language”, 2017 [Jun+17]

reasoning about mutable borrows within Iris and proves its correctness
in Coq, this comes at the cost of the reasoning itself being manual and
slow. In this section, we show how to leverage the unique flexibility of
Gillian to automate reasoning about lifetimes and basic operations on
mutable borrows.

19.1 Modelling lifetimes: core predicates

In Rust, a lifetime is a type-level variable representing a period of time
during which a reference is valid. It is the responsibility of the borrow
checker of the compiler to compute sound lifetimes for all references so
that the ownership discipline of Rust is maintained.

In RustBelt, lifetimes are encoded as tokens in its separation logic:
the token [κ]q, with 0 < q ≤ 1, represents an alive lifetime κ, while [†κ]
denotes that the lifetime κ has expired. RustBelt also provides rules
to reason about lifetime tokens, some of which are included below for
illustrative purposes: e.g., LftL-not-own-end states that a lifetime
cannot be alive and expired at the same time; LftL-end-persist states
that an expired lifetime token is persistent (i.e. it can be duplicated);
while LftL-tok-fract states that alive lifetime tokens may be split
into fractions (for 0 < q, q′).

LftL-not-own-end

[κ]q ∗ [†κ]⇒ False

LftL-end-persist

persistent([†κ])
LftL-tok-fract

[κ]q+q′ ⇔ [κ]q ∗ [κ]q′

For the reader that is familiar with Iris, the above rules are reminis-
cent of the one-shot resource algebra. In Gillian, using variations of
the constructions from Chapter 8, we can encode the lifetime context
as

Lft = PMap(Lft ,FreeAg(Frac(Unit)))

where each state is a partial finite map (constructed using the PMap

constructor) from lifetimes Lft to fractions. The Unit state model passed
to the Frac transformer indicates that the fractional token carries no
additional value. The alive lifetime token [κ]q then becomes syntax
sugar for the core predicate ⟨Frac⟩(κ, q; ()). In addition, each lifetime
token can be freed, and the freed resources (expired token [†·]) form an
agreement state model, as captured by the FreeAg constructor.

Fun parenthesis: As noted in Chapter 8, duplicable expired tokens are
incompatible with under-approximate (UX) reasoning. While this is

174 gillian

not a problem for Gillian-Rust, which does not make use of the support
for UX in Gillian, it suggests that reasoning about type unsoundness
instead of type safety would require novel foundations beyond RustBelt. ξ ∈ Lctx = Lft

fin−−⇀ R†
(0,1]

A lifetime context ξ is then simply a partial finite map from lifetimes
to either a symbolic value ranging over real numbers in the interval
(0, 1], corresponding to the currently owned fraction of the lifetime
token, or †, capturing that the lifetime has expired.

In Gillian-Rust, both kinds of tokens become core predicates, and we
demonstrate how the three RustBelt rules shown above are automated
by providing an excerpt of the rules governing their consumers and
producers below.2 While simple, these rules are illustrative of the 2 In these rules, to avoid clutter: the

judgement uses only the lifetime
context instead of the entire symbolic
state; and the return value is elided
because both actions return unit.

relationship between custom consumers/producers and automation.
For example, the rule Lft-Produce-Alive-Add adds a fraction q

of an alive token when a fraction q′ is already owned, automating the
right-to-left implication of LftL-tok-fract. On the other hand, Lft-

Produce-Own-End vanishes (i.e. assumes False) when producing
an alive token in a context where the lifetime has expired, automating
LftL-not-own-end. Similarly, in the consumer/producer paradigm,
a core predicate is made persistent when its producer is idempotent
and its consumer does not modify memory. Hence, together, rules
Lft-Consume-Exp and Lft-Produce-Exp-Dup automate LftL-

end-persist.

Lft-Produce-Alive-Add
ξ(κ′) = q′ π = (κ = κ′ ∧ 0 < q ∧ q + q′ ≤ 1)

ξ′ = ξ [κ← q + q′]

ξ.prod[·]·(κ, q)⇝ ⟨ξ
′ | π⟩

Lft-Produce-Own-End
ξ(κ) = †

ξ.prod[·]·(κ, q)⇝ vanishes

Lft-Consume-Exp
ξ(κ′) = † π = (κ = κ′)

ξ.cons[†·](κ)→ ⟨Ok : ([], ξ) | π⟩

Lft-Produce-Exp-Dup
ξ(κ′) = † π = (κ = κ′)

ξ.prod[†·](κ)⇝ ⟨ξ | π⟩

19.2 Modelling full borrows: guarded predicates

In Rust, a mutable reference of a value of type T during lifetime κ,
denoted by &κ

mutT, corresponds to temporary ownership of the reference
and the value it points to. To model such a behaviour, RustBelt intro-
duced full borrows, denoted by &κP , which are higher-order predicates
denoting that the resource described by assertion P is borrowed during
lifetime κ. In RustBelt, where ownership predicates do not expose a
pure representation, the ownership predicate of a mutable reference p
and the key rules for manipulating mutable borrows are as follows:

J&κ
mutTK(p) ≜ &κ(∃v. p ↦→ v ∗ JTK(v))

LftL-borrow-acc

&κP ∗ [κ] ≡−∗ ▷ P ∗ (▷P ≡−∗ &κP ∗ [κ])

automating reasoning about mutable borrows 175

In particular, LftL-borrow-acc states that one may open a borrow
by temporarily giving up the corresponding lifetime token, and may
later close that borrow after having reformed the invariant, at which
point the token is recovered. Crucially, having to reform the invariant
inside a borrow is what ensures that a callee function which is given
a borrow may not cause undefined behaviour in the future, and every
borrow must eventually be closed, as the lifetime token is required at
the time it expires. In Gillian-Rust, the view shift operator present in
the LftL-borrow-acc rule is realised via guarded predicate unfolding,
introduced shortly, whereas the later modality, ▷, is omitted; in §23.2,
we provide a justification for the soundness of this approach.

Full borrows raise two main challenges for a semi-automated tool
such as Gillian: 1) it needs to reason about higher-order predicates;
and 2) it needs to automatically understand when to open and close
borrows in common proof patterns. We now present the two key insights
behind the encoding and automation of reasoning about full borrows
in Gillian-Rust.

Compiling away higher-orderness While program proofs do make use
of higher-order rules such as LftL-borrow-acc, they only use them
with a specific, finite set of instantiations. For example, when proving
pop_front_node, one only needs to manipulate the particular borrow
predicate corresponding to the ownership predicate J&κ

mutLinkedList<T>K.
When using the Gilsonite API, a user may instantiate the full borrow
assertion using the #[borrow] attribute. For instance, the ownership
predicate for mutable references is defined as follows in the Gilsonite
library:

impl<T> Ownable for &mut T {
#[borrow]
fn own(self) → Gilsonite {
gilsonite!(exists v. (self → v) * v.own())

}
}

obtaining an ownership predicate for mutable references of type T. Note
that such predicates can be defined parametrically, using a generic type;
when required for a more specific type, such as LinkedList<T>, they will
be instantiated at compilation time.

Finally, ownership predicates for type parameters are compiled to
abstract predicates, that is, predicates that cannot be unfolded, a
well-known trick in the world of semi-automated tools. This ensures
that if a specification has been proven using a type parameter T, then
this type parameter can be instantiated with any other type to obtain
a new trusted specification, with the instantiation happening at the
call site that requires it.

Leveraging known automations for borrow access The key insight
to automating borrow access is the understanding that borrows behave
similarly to predicates encoded using the Pred symbolic state model
transformer presented in Chapter 8. Remember that, using the trans-
former Pred(S,P), the symbolic state model S is enhanced with support
for the user-defined predicates defined in P. The state then maintains

176 gillian

a list of folded predicates, of the form (ρ, v⃗) ∈ (P.names× List(Val)),
where each folded predicate consists of a name ρ and parameters v⃗.

Each of these tools also comes with two ghost commands that allow
users to manipulate folded predicates: unfold and fold. In particular,
unfold removes a predicate stored in its folded form from the state and
produces its definition in its place, whereas fold is its dual, consuming
the predicate’s definition from the state and adding its folded form to
the state.

One may notice the similarity between the borrow access rule and
the folding and unfolding of predicates: when closed, both borrows and
folded predicates act as abstract tokens that can be exchanged for the
resource they contain. The only distinction is the “cost” of unfolding:
none for predicates, and a lifetime token for borrows.

A guarded predicate context γ ∈ List(Str × Lft × List(Val)) is a list
of predicates which are annotated with a lifetime such that its token
is the cost for their opening. It exposes two actions: gunfold/gfold,
which respectively behave like unfold/fold apart from the fact that
they consume/produce that guarding lifetime token, and produce/con-
sume an additional opaque closing token, denoted by Cρ(κ, q, x⃗), which
embodies the closing update (P ≡−∗ &κP ∗ [κ]q).

Unfold-Guarded
P[ρ] = (l, x⃗, Q) σ.cons[·]·(κ, q)→ ⟨Ok : ([], σ′) | π⟩

σ′ = (µ′, γ′) ρ(κ, v⃗) ∈ γ′ γ′′ = γ′ \ ρ(κ, v⃗) σ′′ = (µ′, γ′′)

Q′ = Q ∗ Cρ(κ, q, v⃗) θ = [x⃗ ↦→ v⃗] σ′′.prodQ′(θ)⇝ ⟨σ′′′ | π′⟩
p ⊢ σ.gunfoldρ(κ, v⃗)⇝ ⟨Ok : ((), σ′′′) | π ∧ π′⟩

The Unfold-Guarded rule describes successful execution of gunfold.
For clarity, we decompose symbolic states into a pair (µ, γ), where µ
represents the remaining components. In addition, we write in purple
elements of the rule which are novel with respect to the more classic
unfold rule. Finally, this command is performed in the context of a
program p, where p.predDefs maps predicates to their definitions.

This encoding of full borrows has one important advantage: Gillian
comes with years of experience in automating separation logic proofs,
including heuristics that are able to decide when to automatically unfold
or fold predicates as required by the analysis. By encoding borrows
in the above way, we can immediately leverage those heuristics and
allow for automatic opening and closing of full borrows. In particular,
proving the type safety of LinkedList::pop_front and LinkedList::push_front

becomes completely automatic once the safety invariants of LinkedList

has been properly specified as in §18.3.

19.3 Proving safety of borrow extraction

Unfortunately, opening and closing are not the only operations that one
needs when working with full borrows. We identify several recurring
patterns in unsafe Rust programs and provide ways of instantiating
lemmas that allow us to analyse code that uses these patterns.

In particular, borrow extraction—the process of cutting a borrow up
into a smaller borrow—is a common pattern in unsafe Rust program-
ming, and every data-structure module of the standard library provides

automating reasoning about mutable borrows 177

at least one function that uses this pattern (e.g., LinkedList::front_mut

or Vec::get_mut). In fact, borrow extraction is the most idiomatic way of
modifying an element of a collection. Most often, implementing such
a function is unsafe, as incorrect borrow extraction could break the
safety guarantees of Rust. For example, consider the case in which the
LinkedList library implementer creates a first_node_mut function, which
returns a mutable reference not to the first element (&mut T), but to the
first node (&mut Node<T>), which contains the first element as well as next

and prev pointers. Then, using only safe code, a client function could
modify the next pointer to point to the node itself, creating a cycle in
the list. As explained in §17.2, this would certainly lead to an undefined
behaviour, although not during the execution of first_node_mut itself.

v

next

prev

&mutNode⟨T⟩

v

next

prev

&mutT

Figure 19.1: An invalid and a valid
LinkedList mutable reference.

On the other hand, returning a mutable reference to the first element
(&mut T) is perfectly fine, the intuition being that one can remove the
resource associated with the element and obtain a remainder. To that
remainder we can then add any other element that satisfies the invariant
of T, in order to recover a structure satisfying the LinkedList invariant.
This principle is embodied by the borrow-extract rule—which we
have proven in Iris using RustBelt (it is a trivial corollary of the already
existing rules)—where P is the invariant of the LinkedList, Q is the
invariant of T, and Q −∗ P is the remainder. In addition, the rule allows
one to add a persistent context if it is required for performing the
extraction. For example, in the case of the LinkedList, the extraction of
the first node is only possible if it is not empty (i.e. if the head pointer
is not None, which would be captured in that persistent context).

borrow-extract
persistent(F) F ∗ P ⇒ Q ∗ (Q −∗ P)

F ∗ [κ]q ∗&
κP ≡−∗ &κQ ∗ [κ]q

Using the Gilsonite API, users may instantiate the ghost command
that performs the view shift in the conclusion of the borrow-extract

rule by specifying the borrow predicates &κP and &κQ as well as the
persistent assertion F , as illustratively done in Figure 19.2.3 Gillian 3 In Figure 19.2, list_ref_mut_frozen

denotes a borrow predicate obtained
from the ownership predicate of
&mut LinkedList by freezing exis-
tentials corresponding to the head,
tail and len fields of the structure.
Freezing existential variables is a
common strategy for extracting
borrows, supported by the Gilsonite
API. To avoid cluttering the main
body of this presentation with more
constructions, frozen borrows are
detailed in Appendix F.

itself is unable to prove that borrow-extract holds, or to manipulate
borrows using such a rule. Instead, the Gillian-Rust compiler produces
two lemmas: one corresponding to the conclusion of the rule, which
is marked as trusted and left unproven, and one corresponding to
the hypotheses of the rule, which needs to be proven. As we have
proven that the rule itself holds in Iris, the meta-theory of Gillian-Rust
therefore ensures that if we prove the second lemma, then the first
lemma also has to hold.
#[extract_lemma(forall head, tail, len, p.

assuming { head == Some(p) } // F
from { list_ref_mut_frozen(list, head, tail, len) } // &κP

extract { Ownable::own(&mut (*p.as_ptr()).element) } // &κQ

)]
fn extract_head<T: Ownable>(list: &mut LinkedList<T>); // Implicitly parametric on κ

Figure 19.2: Example instantiation of
a borrow extraction lemmaTo automatically prove this second kind of lemmas, we have extended

Gillian with the ability to reason about magic wands, adapting the
related work on Viper4, to Gillian’s parametric separation logic; the 4 Dardinier et al., “Sound Automa-

tion of Magic Wands”, 2022 [Dar+22]details of this extension are out of scope of this presentation.

Chapter 20

Functional correctness and prophetic reasoning

While the ability to manipulate full borrows is enough to verify type
safety of programs that make use of mutable references, it is not
enough to prove functional correctness of these programs. In particular,
the rule LftL-borrow-acc presented previously enforces that the
same invariant be used to close the full borrow, effectively losing the
information that the value was updated.

Specifying functional correctness of programs manipulating mutable
references is, in itself, a challenge, as it requires the ability to specify
properties which shall only hold in the future, that is, at the time when
the borrow expires. Thankfully, this challenge has been addressed by
previous work: Prusti1 introduced pledges and RustHorn2 introduced 1 Astrauskas et al., “Leveraging rust

types for modular specification and
verification”, 2019 [Ast+19]
2 Matsushita et al., “RustHorn:
CHC-based Verification for Rust
Programs”, 2021 [MTK21]

prophecy variables, later used in Creusot. However, only the latter has
been given a foundational formalisation in RustHornBelt3, an extension

3 Matsushita et al., “RustHornBelt:
a semantic foundation for functional
verification of Rust programs with
unsafe code”, 2022 [Mat+22]

of RustBelt which describes how prophetic specifications interact with
full borrows.

In this chapter, we briefly remind the reader of the workings of
RustHornBelt, and show how its concepts are encoded in Gillian-
Rust. To conclude our technical presentation, we show how Pearlite
specifications can be compiled to Gilsonite, hence expaining how unsafe
proof goals can be delegated by Creusot to Gillian-Rust.

20.1 Representations, parametric prophecies, and observations

In order to reason about functional correctness within the framework
of RustBelt, RustHornBelt extends ownership predicates with an addi-
tional parameter corresponding to a pure mathematical representation
of the value. Given a type T, the type of its representation is denoted
by ⌊T⌋. For example, a value of type LinkedList<T> is represented by a
sequence of which each element is the representation of the element at
the corresponding index in the list, i.e. ⌊LinkedList<T>⌋ = Seq<⌊T⌋>.

Mutable references, on the other hand, are represented as a pair of
representations of the inner type (i.e., ⌊&mut T⌋ = ⌊T⌋ × ⌊T⌋), where the
first element denotes the value to which the mutable reference currently
points, and the second denotes the value it will have at the time it
expires.

J&κ
mutTK(p, r) ≜ ∃x s.t. r.⋆2 =↑x. VOx(r.

⋆1) ∗
&κ(∃v, a. p ↦→ v ∗ JTK(v, a) ∗ PCx(a))

RustHornBelt then proposes an ownership predicate for mutable ref-
erences which exposes this representation, using a notion of parametric
prophecies. A prophecy variable x is attached to the mutable reference,
and the second element of the representation pair r is the future value

180 gillian

of this prophecy, denoted by ↑x.

Mut-Agree

VOx(a) ∗ PCx(a
′) ⊢ a = a′

Mut-Update

VOx(a) ∗ PCx(a)⇛ VOx(a
′) ∗ PCx(a

′)

In addition, there are two connected resources respectively called
value observer, denoted by VOx, and prophecy controller, denoted by
PCx, which together provide a solution to the problem of information
loss when closing a full borrow. In particular, the observer maintains the
last-observed current value and, when the borrow opens, the previously-
lost value of the representation a is recovered through the Mut-Agree

rule. Before closing a borrow again, the verification engineer may use
the Mut-Update rule to update the value of the prophecy variable to
match the new representation.

Lastly, RustHornBelt introduces observations, denoted by LψM, where
ψ is a pure assertion containing information known about prophecy
values. Observations act as a second layer of truth, preventing future
information from leaking into the separation logic and creating para-
doxes.

20.2 Key idea: parametric prophecies and symbolic execution

In order to encode prophecies into Iris, RustHornBelt wraps the entire
execution into a reader monad. In simple terms, execution is performed
within a context which preemptively captures an assignment for the
future value of each existing prophecy variable (i.e., a prophecy assign-
ment map PcyVar → Val). A prophetic value is then an object which,
given a prophecy assignment, yields a value, i.e. ProphAsn→ Val .

This definition is strikingly similar to the definition of symbolic
values provided in Chapter 6, with prophecy variables replacing symbolic
variables.

Therefore, parametric prophecies appear to be closer to symbolic
variables than they are to prophecy variables formalised by Jung et
al.4. This intuition suggests that one may use the same process to 4 Jung et al., “The future is ours:

prophecy variables in separation
logic”, 2020 [Jun+20]

reason about prophecy variables as for symbolic variables, and ide-
ally fit them into the same framework. In symbolic execution, each
state carries a path condition π, a pure formula which accumulates
all currently-known constrains about the existing symbolic variables,
while for prophecy variables, it is the observations that play this role
of constraint accumulator. The core idea behind encoding prophecy
variables follows from this remark: observations can simply take the
shape of a secondary path condition, implemented as a component of
the symbolic state, making calls to the solver when required.

To this end, we introduce a new symbolic state model, where states
consist of only one symbolic expression, called observation context and
denoted by ϕ ∈ Obs. The observation context may depend on both
prophecy variables and symbolic variables. Below, we present three of
the rules that apply to observations in RustHornBelt, and two rules
that describe the behaviour of the corresponding Gillian-Rust consumer
and producer for the successful cases.

functional correctness and prophetic reasoning 181

Obs-merge

LψM ∗ Lψ′M ⊢ Lψ ∧ ψ′M
Proph-Sat

LψM⇒ ∃ε. ε(ψ)

Proph-True
∀ε. ε(ψ)

LψM

Observation-Produce
π ∧ ϕ ∧ ϕ′ SAT

(ϕ, π).prodL·M(ϕ
′)⇝ ⟨ϕ ∧ ϕ′ | π⟩

Observation-Consume
(π ∧ ϕ⇒ ϕ′) VALID

(ϕ, π).consL·M(ϕ
′)→ ⟨Ok : ((), ϕ) | π⟩

Exceptionally, these rules receive
the current path condition as an
argument, as it is necessary for the
reasoning. Gillian-Rust depends on
the alternative implementation of the
symbolic execution monad presented
in §6.6

Obs-merge indicates that our model of observations as a single
symbolic expression is appropriate, and that framing on a new observa-
tion amounts to simply conjuncting it with the current observation. In
addition, Proph-Sat tells us that if an observation holds, then at least
one prophecy assignment must satisfy it. Together, these rules instruct
us how to implement the producer for observations: if the conjunction
of the path condition, current observation, and new observation is satis-
fiable, then we can add the produced observation to our current one (cf.
Observation-Produce). Finally, Proph-True states that anything
that is true independently of prophecy variables can be captured as
an observation, that is, anything that is true outside of the prophetic
world is also true within it. With our approach, this means that the
path condition can be used seamlessly as part of our observations when
needed, embodied in the Observation-Consume rule: when checking
if an observation ϕ′ holds, we check that it is entailed by the current
path condition and observation.

20.3 Value observers and prophecy controllers

Value observers and prophecy controllers provide yet another opportu-
nity to leverage the flexibility of Gillian and implement a custom state
model. In particular, we entirely automate the Mut-Agree rule by
defining a prophecy context χ = PcyVar → Expr × B × B as a map
that associates each prophecy variable with its current value and two
Booleans, which correspond to the ownership of the value observer and
of the prophecy controller in the state.

Figure 20.1 provides rules for successfully producing a value observer
into the state; the production rules for the prophecy controller are
analogous and therefore elided. In particular, producing VOx(a) in a
prophecy context which does not already contain any binding for the
prophecy variable x will bind x to the triple (a, true, false), thereby
encoding that the current value for the prophecy is a, that its value
observer is in the context, but not its prophecy controller. On the other
hand, if the controller with value a′ already exists in the current state,
that is, if the prophecy context already has the triple (a′, false, true)

bound to x, then the Boolean flag corresponding to the presence of
the corresponding value observer is set to true without modifying the
current value and we learn that a = a′, in the form of an additional
constraint added to the path condition.

182 gillian

VObs-Produce-Without-Controller
x /∈ dom(χ)

χ′ = o [x← (a, true, false)]

χ.prodVO(x, a)⇝ ⟨χ′ | true⟩

VObs-Produce-With-Controller
χ(x) = (a′, false, true) χ′ = χ [x← (a′, true, true)]

π = (a = a′)

χ.prodVO(x, a)⇝ ⟨χ′ | π⟩

Figure 20.1: Rules: producer of the
value observer

However, this does not automate the Mut-Update rule: after
having modified the contents of a mutable reference p: &mut T, one
still needs to apply this rule before being able to close the mutable
borrow. The current implementation of Gillian does not allow us to
fully automate this process, but we are able to provide the Mut-Auto-

Update lemma which can be used by the verification engineer by
simply writing p.prophecy_auto_update(). This lemma updates the current
value of the prophecy by automatically choosing the appropriate value
that will allow the borrow to be closed again.

Mut-Auto-Update
JTK(v, a′) ∗VOx(a) ∗ PCx(a)⇛

JTK(v, a′) ∗VOx(a
′) ∗ PCx(a

′)

MutRef-Resolve
J&κ

mutTK(p, (a, a
′)) ≡−∗ La = a′M

Finally, Gillian-Rust also provides a manual way of resolving mutable
references, as described by MutRef-Resolve, which, as proposed
by RustHornBelt, allows us to obtain an observation of the equality
between the current value of the prophecy and its future value at the
time where the corresponding mutable reference expires.

Borrow extraction with prophecies When manipulating the owner-
ship predicate of a mutable reference with prophecies in the style of
RustHornBelt, the rule for extracting sub-borrows must be adapted
to perform partial resolution of the prophecy. The corresponding rule
is substantially more complex than borrow-extract, but it yields
the same level of automation and we have proven it correct in the Coq
development of RustHornBelt. To avoid cluttering the main body of
this presentation, we delay the presentation of this rule to Appendix F.

Chapter 21

Anatomy of a hybrid proof : Merge Sort

In this section, we present a detailed example of a hybrid proof, showing
how we can use Creusot and Gillian-Rust to prove the correctness of a
Merge Sort implementation that uses doubly-linked lists. We briefly
cover the safe implementation and its verification in Creusot, and then
explain how we interface with Gillian-Rust to prove correctness of
associated unsafe operations.

21.1 Writing a hybrid proof

Following the approach outlined in Chapter 17, we divide the work as
follows: (1) Creusot is responsible for verifying the safe parts of the
program (in this case, the Merge Sort algorithm itself), which normally
constitute the great majority of the code; while (2) Gillian-Rust is
responsible for verifying the unsafe parts (in this case, the doubly-linked
list operations), which are normally more low-level and perform more
complex but smaller operations such as manipulation of pointers or
uninitialised memory. In Figure 21.1, we present a fragment of our
Merge Sort implementation. For space reasons, we elide the (standard)
implementations of merge_sort and merge, focusing instead on the split

function, which takes a mutable borrow to a linked list and splits it
into two halves.

1 #[pearlite::ensures(sorted((^l)@) && l@.permutation_of((^l)@))]
2 pub fn merge_sort(l: &mut LinkedList<i32>) { // Standard implementation using split and merge }
3
4 #[pearlite::ensures(inp@.permutation_of(result.0@.concat(result.1@)))]
5 fn split(inp: &mut LinkedList<i32>) → (LinkedList<i32>, LinkedList<i32>) {
6 let old_inp = snapshot!(inp);
7 let mut (left, right, push_left) = (LinkedList::new(), LinkedList::new(), true);
8 let mut popped = snapshot! { Seq::EMPTY };
9 #[pearlite::invariant(popped.concat(inp@).ext_eq(old_inp@))]

10 #[pearlite::invariant(popped.permutation_of(left@.concat(right@)))]
11 while let Some(i) = inp.pop_front() {
12 popped = snapshot! { popped.push(i) };
13 snapshot!({perm_right::<i32>; perm_left::<i32>});
14 if push_left { left.push_front(i); } else { right.push_front(i); };
15 push_left = !push_left;
16 }
17 (left, right)
18 }
19
20 #[pearlite::requires(sorted(l@))]
21 #[pearlite::requires(sorted(r@))]
22 #[pearlite::ensures(sorted(result@) && result@.permutation_of(l@.concat(r@)))]
23 fn merge(l: &mut LinkedList<i32>, r: &mut LinkedList<i32>) → LinkedList<i32> { ... }

Figure 21.1: A fragment of our
Merge Sort algorithm, implemented
using doubly-linked listsIn Creusot, unsafe types such as LinkedList<T> are treated as opaque

types, on which no operations can be performed. To reason about them,

184 gillian

Creusot axiomatises their representation function using a ShallowModel

trait, and the Pearlite1 specifications of their APIs are assumed as 1 Pearlite is a first-order logic, in-
cluding the usual connectives for
conjunction, disjunction, implica-
tion, and quantification, and also
support for functions and predicate
definitions.

axioms. We can access this shallow model through its associated
operator @. Using this model operation, we specify the postcondition
of the split function as per line 4 of Figure 21.1, stating that the
concatenation of the two resulting lists is a permutation of the input
list. Operations on mutable borrows are specified using the final
operator ^, which accesses the prophecy of a mutable reference. In line
1, we specify that the initial value ((*l)@) of the list is a permutation
of its final value ((^l)@).

pub struct LinkedList<T> { ... }

impl<T : Ownable> LinkedList<T> {
#[hybrid::ensures(

forall<x : _> result == Some(x) ==> Seq::singleton(x).concat((^self)@) == (*self)@)]
#[hybrid::ensures(result == None ==> ^self == *self && self@.len() == 0)]
pub fn pop_front(&mut self) → Option<T> { ... }

#[hybrid::requires(self@.len() < usize::MAX@)]
#[hybrid::ensures(Seq::singleton(e).concat((*self)@) == (^self)@)]
pub fn push_front(&mut self, e: T) { ... }

#[hybrid::ensures((*self)@.push(e) == (^self)@)]
pub fn push_back(&mut self, e: T) { ... }

}

Figure 21.2: The LinkedList library
used by our Merge Sort algorithm

// Pearlite specification
#[pearlite::requires(self@.len() < usize::MAX@)]
#[pearlite::ensures(Seq::singleton(e).concat((*self)@) == (^self)@)]
// Gilsonite specification
#[gilsonite::specification(forall self_repr, e_repr.

requires { self.own(self_repr) * e.own(e_repr) $ self_repr.0.len() < Int::from(usize::MAX) $ }
exists ret_repr.
ensures { ret.own(ret_repr) * $Seq::singleton(e_repr).concat(self_repr.0) == self_repr.1$ }

)]
pub fn push_front(&mut self, e: T) { ... }

Figure 21.3: Pearlite and Gilsonite
specifications of push_front

In Figure 21.2, we present the specification of the LinkedList library
used by our Merge Sort. We use the hybrid::requires and hybrid::ensures

attributes to specify, respectively, the pre- and post-conditions of the
pop_front, push_front, and push_back functions. These attributes act as
the bridge between Pearlite and Gilsonite, in that from them, using
the compilation mechanism presented in §21.2, we are able to generate
the Gilsonite specification expected by Gillian-Rust. For example, for
push_front, we will end up with the specifications given in Figure 21.3.

Verification of the complete Merge Sort and accompanying Linked
List implementation is performed by successively running cargo creusot

and cargo gillian to generate the proof obligations for Creusot and
Gillian-Rust, respectively, which are then discharged by running the
appropriate back-ends: Why3 for Creusot and the Gillian-Rust back-
end for Gillian-Rust.

anatomy of a hybrid proof : merge sort 185

21.2 Compilation of Creusot specifications

To compile Creusot specifications to Gilsonite, we first need to inter-
pret Creusot’s types in Gillian-Rust. Recall that we interpret Rust
types using their representations, and that LinkedList<T> is interpreted
via the Ownable trait in Gillian-Rust as gillian_rust::Seq<T::ReprTy>. In
addition, we must interpret the logical types of Creusot, which is also
done by defining appropriate instances of Ownable: in particular, the
creusot::Seq<T> type of Creusot, just like LinkedList<T> or Rust, is inter-
preted as gillian_rust::Seq<T::ReprTy>. Like Creusot and RustHornBelt,
we interpret mutable borrows as a pair of the representation of the
value and a prophecised value, so that &mut LinkedList<T> is interpreted
as (Seq<T::ReprTy>, Seq<T::ReprTy>).

{P} fn f⟨κ⟩(x1 : T1, . . . , xn : Tn)→ Tr {Q}
=⇒

{(�n
i=1JTiK(xi,mi)) ∗ LP [xi/mi]M ∗ [κ]q}
fn f⟨κ⟩(x1 : T1, . . . , xn : Tn)→ Tr

{ ∃mr. JTrK(r,mr) ∗
LQ[xi/mi][r/mr]M ∗ [κ]q

}

Specification interpretation is done by elaboration, the general schema
of which is given above. We require ownership of every function
argument, associating each with a representation value, and in the
end, we own the result, again associated with a representation value.
We then place the preconditions and postconditions into prophecy
observations, substituting occurrences of Rust variables with their
corresponding representation values. Following this process, we obtain
the Gilsonite specification for pop_front as given in Figure 21.3.

21.3 Gillian-Rust in action: LinkedList::push_front

To complete our tour of this hybrid verification case study, we ex-
plain in detail how Gillian-Rust proves the Pearlite specification of
push_front method of LinkedList, leveraging the various features of the
tool presented in the previous sections. In Figure 21.4, we give the full
implementation of push_front, together with the auxiliary push_front_node

method. We provide a specification only for the former, as Gillian-Rust
can simply symbolically execute the latter.

When execution starts, the state contains: a) the ownership pred-
icate for a mutable reference to a LinkedList at reference self, with
representation self_repr; b) the ownership predicate for the element elt

of type T; c) an observation that the length of the representation of the
linked list is less than usize::MAX; and d) a lifetime token corresponding
to the lifetime of the mutable reference self.

First, in line 3, the function allocates a new owned pointer, Box,
which contains a new node constructed from the element elt, with
previous and next pointers set to None. This pointer is immediately
passed to the auxiliary function push_front_node.

In line 11, the access to self.head requires ownership of the corre-

186 gillian

1 #[gilsonite::specification(...)]
2 pub fn push_front(&mut self, elt: T) {
3 self.push_front_node(Box::new(Node::new(elt)));
4 // Automatically folds the dllSeg predicate twice, applies Mut-Update,
5 // closes the borrow, and applies MutRef-Resolve
6 mutref_auto_resolve!(self); // <- Single additional annotation required
7 }
8
9 fn push_front_node(&mut self, mut node: Box<Node<T>>) { unsafe {

10 // Mutable borrow is automatically opened when accessing self.head on the next line.
11 node.next = self.head; node.prev = None;
12 let node = Some(Box::leak(node).into());
13 // The dllSeg predicate is automatically unfolded to execute the next three lines.
14 match self.head {
15 None => self.tail = node, Some(head) => (*head.as_ptr()).prev = node,
16 }
17 self.head = node;
18 // Symbolic execution will branch on the next line, depending on self.len + 1 overflowing.
19 // The overflow branch will be discarded, by proving contradiction with the precondition.
20 self.len += 1;
21 } }

Figure 21.4: Implementation of
push_front

sponding location in memory, which is currently hidden in the full
borrow contained in the resource a). Thanks to the encoding of full
borrows presented in §19.2, Gillian-Rust can automatically open the
borrow by applying the Unfold-Guarded rule, losing ownership of the
lifetime token (resource d)), and obtaining ownership of the value con-
tained at address self, together with the ownership of the entire linked
list, and the prophecy controller corresponding to its representation.

The following lines of code perform in-place updates to the heap,
which are handled fully-automatically by Gillian-Rust, as presented in
Chapter 18. Note that the matching of the value of self.head in line
14 and its dereferencing to access its prev field requires unfolding the
dllSeg predicate once, which is also done automatically.

Next, in line 20, the len field of the list is updated. This operation
may overflow the value. The current path condition is not sufficient
to prove that the overflow will not happen, and execution branches
into two paths: one correct path where the overflow does not happen,
and one incorrect path which implicitly calls a panic. Before panicking,
Gillian-Rust always checks that the current path condition (here, the
overflow condition) does not contradict the observation, using the
Proph-Sat rule (which entails that LFalseM ⇒ False). Here, the
observation, our resource c), contradicts the overflow, and the incorrect
path is discarded.

Next, push_front_node returns, and the mutref_auto_resolve! annotation
on line 6 tells Gillian-Rust to apply the Mut-Update and MutRef-

Resolve rules in sequence. The former requires the invariant of
the linked list to have been restored, with a new representation. At
this point, Gillian-Rust automatically folds the dllSeg predicate twice,
once to revert the unfolding previously performed, and once to push
the newly-added node and its ownership predicate (resource b)) to
its front. Then, Gillian-Rust folds the ownership predicate of the
linked-list, checking that the first and final pointer are None, and that
its length field corresponds to the length of its new representation,

anatomy of a hybrid proof : merge sort 187

which is self_repr with elt_repr prepended to it. Mut-Update is then
successfully applied, updating the prophecy controller and observer to
match the new representation.

When applying MutRef-Resolve, Gillian-Rust understands that
the borrow needs to be closed. Since the invariant of the linked list has
been correctly restored, the full borrow is automatically closed, and
the lifetime token is recovered. MutRef-Resolve then discards the
resource corresponding to the mutable reference (including the full bor-
row), and produces the observation required to prove the postcondition
of the function.

Finally, the obtained state is matched against the postcondition,
which requires: 1) ownership of the return value, which is vacuously
owned as the return type is unit; 2) the lifetime token that was recovered
when closing the borrow; and 3) the observation obtained by applying
Mut-Update. As the postcondition is satisfied, the specification is
verified, and can be soundly used in Creusot.

Chapter 22

Evaluation

We used our hybrid verification pipeline to perform several case studies.
First, we verified EvenInt, a tutorial example developed by the authors
of RefinedRust1, and compare our results with theirs. Next, we verified 1 Gäher et al., “RefinedRust: A

Type System for High-Assurance
Verification of Rust Programs”, 2024
[Gäh+24]

type safety (TS) and functional correctness (FC) of LP, a “linked-pair”
data-structure that we developed as a tutorial example for Gillian-Rust.
We also verified, for the first time to our knowledge, TS and FC of
unsafe code from the Rust standard library, specifically a subset of
the LinkedList and Vec modules (with caveats for the latter), with no or
minor modifications to the original source code. We also verified an
alternative, smaller implementation of Vec called MiniVec, also verified
using RefinedRust, in order to provide a performance comparison. Fi-
nally, we proved a merge sort algorithm for linked-lists (cf. Chapter 21),
and a gnome sort algorithm for vectors. For each case study, we provide
detailed data for performance, lines of code verified, and annotation
overhead. All experiments were performed on a MacBook Pro 2019,
with 16GB Memory and a 2.3GHz 9-Core Intel Core i9 processor, noting
that Gillian-Rust is single-threaded.

Table 22.1 presents the results of our evaluation. For each internally
unsafe module analysed, we give: the number of executable lines
of code; the number of lines of annotations (specifications/predicate
definitions/lemmas/proof tactics); the type of properties verified (with
FC subsuming TS); and the time taken to verify the properties. We
note that verifying only TS allows for the use of a simpler encoding,
which eschews prophecies to track value information.

Test Case Verified Props. Exec. LoC Spec. LoC Time (s)

EvenInt TS/FC 47 13 0.04s

LP TS 32 40 0.03s

LP FC 43 56 0.04s

LinkedList TS 130 176 0.24s

LinkedList FC 130 227 0.45s

MiniVec FC 140 59 1.35s

Vec TS 294 44 1.08s

Vec FC 294 107 2.57s

Table 22.1: Evaluation results:
Verification of internally unsafe
modules using Gillian-Rust

22.1 EvenInt

We start from a small case study provided as part of the evaluation
of the RefinedRust paper. EvenInt is a structure that only contains
a single value of type i32, for which the ownership invariant requires

190 gillian

the value to be even. We copy all applicable functions from this case
study (eliding those that make use of shared references, as they are not
yet supported by Gillian-Rust, cf. Chapter 23) and verify them within
Gillian-Rust, by giving Creusot specifications that correspond to the
RefinedRust specifications provided. These functions are:
• new, an unsafe function that receives an integer and returns an EvenInt

without further checks;
• new_2, a safe function that receives an integer, checks if it is even, and

if it is not, adds or removes one to make it even, and then returns
the corresponding EvenInt;

• new_3, a safe function that receives an integer i and returns an
Option<EvenInt>: Some(i) if i is even, and None otherwise;

• add, an unsafe function that increments the EvenInt value by one,
temporarily breaking the soundness invariant of the structure; and

• add_two, a safe function that mutates an EvenInt in place, calling add

twice.
The specifications for new_2 and new_3 are only TS specifications, and

do not guarantee anything about the value contained by the created
object. The specification of add_two guarantees both TS and that the
value of the EvenInt object is incremented by two.

The total verification time for these specifications using Gillian-
Rust is 0.04s, which is several orders of magnitude faster than the
4m36s of RefinedRust. Furthermore, the Gillian-Rust file contains
fewer specifications than RefinedRust, as it does not require specifying
the internal unsafe functions new and add, which only serve as auxiliary
functions for the public safe functions we care about. Note that, while
we chose not to do so, one could write these specifications in Gillian-
Rust, and doing so would not observably increase the verification time,
given compositionality of Gillian.

In addition, in the add_two function, Gillian-Rust requires a single line
of annotation to resolve the prophecy (the one in line 6 of Figure 21.4).
In contrast, RefinedRust requires of the user to manually write a Coq
proof that if i is an even integer, then i+ 1 + 1 is still a even integer.

22.2 LinkedList

We verify, to our knowledge for the first time, TS and FC of a subset
of the LinkedList API from the Rust standard library, with no or mi-
nor modification to the original source code, extracted from commit
ad2b34d0 of the official Rust repository, dated April 12, 2023. Specifi-
cally, apart from the added annotations required for verification, the
only modification made was to manually inline calls to Option::map, as its
parameter is a closure, which are not yet supported by the Gillian-Rust
compiler. Once closures are added to the compiler, there will be no need
for additional annotations, as Gillian-Rust can symbolically execute
them like any other function, without requiring a specification.

We use the ownership predicate presented in Figure 17.2 and the
dllSeg predicate provided in §18.3, and prove FC properties for the fol-
lowing 6 functions: new, push_front, pop_front, push_back, pop_back, front_mut.
The total verification time is 0.72s, which includes the verification of

evaluation 191

the auxilliary proofs generated by the extract_lemma macro, as well as
two additional lemmas required for the proof of push_back and pop_back.
These two lemmas change the direction of dllSeg, going from a defini-
tion that traverses the list from head to tail to one that traverses the list
from tail to head, and vice-versa. These lemmas, importantly, are not
Rust-specific, but rather essential primitives for any doubly-linked-list
formalisation in SL. Both lemmas are written in Rust, and proven
within Gillian-Rust without requiring the use of external tools.

22.3 MiniVec and Vec

MiniVec We verify a subset of the API for MiniVec, a simple imple-
mentation of the Vec module proposed by RefinedRust as a case study.
Using specifications that provide similar guarantees to those proven
by RefinedRust, we verify FC of the new, with_capacity, push, pop, get_mut,
and get_unchecked_mut functions, as well as a simple client function that
is part of the RefinedRust case study. Our hybrid pipeline performs
verification in 1.35s, 1.28s for Gillian-Rust and 0.07s for Creusot, in
contrast with the 30m40s of RefinedRust.

Standard library Vec In addition to MiniVec, we verify the Vec imple-
mentation given in the Rust standard library, taken from the same
commit as the LinkedList module, and targeting the same functions
as for MiniVec. In addition, we also verify index_mut, which performs
a similar operation to get_unchecked_mut, but adds a safety check and
performs access in memory through slice indexing instead of raw pointer
arithmetics. Verifying both of these functions ensures that we correctly
support these two different ways of accessing memory in Rust.

const MIN_NON_ZERO_CAP: usize =
if size_of::<T>() == 1 { 8 }
else if size_of::<T>() <= 1024 {

4
}
else { 1 };

The source code of the standard library Vec module is substantially
more complex than that of MiniVec. For instance, when pushing a
value into a Vec with capacity 0 (i.e., a vector that has not yet been
allocated), the vector is allocated with a capacity that depends on the
size of the value being pushed, using the above code snippet, yielding
three different paths of execution that must all be checked.

There exist further examples of optimisations within the code of Vec,
which we do not simplify. This explains why the verification of this
module takes longer than the verification of MiniVec, yielding (in our
opinion, a still reasonable) 1.08s for TS and 2.57s for FC.

It is important to note that Vec performs untyped allocations by
explicitly providing the size of the allocation in bytes, yielding a raw
pointer to an uninitialised array of bytes. The pointer is then cast to
a pointer to the vector element type and is used to store the typed
values. In this process, the corresponding Gillian-Rust heap object has
some nodes indexed using the u8 type and other nodes indexed using
the vector element type (cf. §18.2), showcasing its resilience to low-level
operations.

Caveats The verification of Vec is performed with several caveats.
First, both Vec and MiniVec are special-cased for when the element type
is zero-sized (ZST). For these types, no allocation is performed, the

192 gillian

capacity remains 0, and the vector is simply a counter for the length.
The vector ownership invariant, however, still needs to capture len

times the resource corresponding to the ownership invariant of the type
of the elements. As Gillian is untyped, expressing this invariant is
difficult, as we are not able to exhibit the only representative of the
ZST type. Therefore, we disallow ZSTs as types of vector elements.
We plan to overcome this limitation by allowing the state model of
Gillian-Rust to produce these representatives. This limitation, however,
does mean that RefinedRust considers several more paths of execution
than Gillian-Rust does for MiniVec.

Furthermore, the borrow extraction lemma required to prove FC
of get_index_mut and index_mut requires the proof of a magic wand that
Gillian-Rust is not yet able to automate, and is left unproven for now.
We plan to add support for manually specifying the proofs for extract
lemmas when the tool is unable to automate them.

Finally, we slightly modified the source code of the standard library
Vec module, in the following ways. First, the vector type is parametric
on an allocator, which we remove and perform all allocation by callint
the Gillian-Rust allocator. We also inline calls to functions such as
Result::map, which receive a closure as parameter, due to the above-
mentioned lack of support for closures. Finally, the real implementation
of index_mut when using usize as an index is hidden behind a few layers
of trait indirection; we manually inline layers so that index_mut is a single
function.

22.4 Hybrid Verification

We argue that a hybrid approach combining Gillian-Rust with Creusot
enables higher performance and flexibility in verification. To validate
this, it is essential to answer two questions (1) “Can Gillian-Rust
effectively verify Creusot-style specifications?”; and (2) “Can those
specifications then be efficiently used from Creusot’s perspective?”.

In Chapter 21, we presented our hybrid macros, which act as a bridge
between the two tools, interpreting the specifications appropriately
as either Pearlite or Gilsonite. We used these macros to specify and
verify the the examples presented in Table 22.1, conclusively answering
(1). The code generated by the hybrid macros is intuitive and often
identical to the raw Gilsonite specification we would write by hand.
We have noticed no impact on verification times caused by use of the
hybrid macros.

Our answer to (2) comes in two parts. Firstly, we note that Creusot
provides the creusot_contracts crate, which provides standard, trusted
specifications for common Rust types through its extern_spec! macro.
These specifications are either identical or semantically equivalent to
the ones proved by Gillian-Rust and at most a safe wrapper would be
required by Creusot to prove the entailment.

Secondly, we implemented and verified several safe programs using
the specifications obtained by Gillian-Rust and observed favourable ver-
ification times. Specifically, we implemented: Merge Sort, consisting
of 55 lines of specification, 56 lines of generic lemmas about permu-

evaluation 193

tations missing from Creusot’s standard library, and 68 executable
lines of code taking 6.3s (wall) 28.7s (user) to verify; Gnome Sort
consisting of 6 lines of specification and 17 executable lines of code
taking 2.6s (wall), 4.6s (user) to verify; and Right Pad consisting of 11
lines of specification and 12 executable lines of code taking 0.6s (wall)
0.4s (user) to verify.

Chapter 23

Limitations and Future work

In its present form, our infrastructure is a preliminary proof of concept,
demonstrating the feasibility of our hybrid methodology in end-to-end
Rust verification. As such, it comes with several limitations, both in
the implementation and meta-theory. We identify and discuss these
limitations, and outline how they will be addressed in future.

23.1 Unimplemented features

Importantly, the features presented here only pose engineering chal-
lenges and mostly require time and engineering effort rather than
further scientific insight.

Compiler coverage The Gillian-Rust compiler is missing support for
some language constructs, such as closures, but we do not foresee any
complications arising from these extensions. In particular, Gillian sup-
ports dynamic calls, extensively tested with JavaScript, and therefore
would not have problems dealing with closures and other function
pointers.

Connection to the Borrow Checker The implementation of the bor-
row checker in rustc makes it difficult to extract values with their
lifetimes annotated. This is an intentional erasure performed by rustc

to avoid introducing accidental dependencies on lifetimes during compi-
lation. This makes it challenging for us to implement specifications and
predicates which involve multiple lifetimes, like the ones that would
be required for types like IterMut<’_>, an iterator producing mutable
borrows to successive elements of a vector. Instead, our implementation
is limited to predicates containing only one lifetime, a property which
we can easily check and enforce with current compiler APIs. Lifting
this limitation will likely require writing a custom borrow-checker pass
for our specifications.

23.2 Meta-theory simplifications

The meta-theory of Gillian-Rust presented in this manuscript heavily
relies on both RustBelt and RustHornBelt, but makes two simplifica-
tions that need to be formally justified; we believe that this is possible,
though it involves a substantial amount of additional work.

Later modalities As Iris is a step-indexed logic, original rules from
RustBelt and RustHornBelt, such as LftL-borrow-acc, use later
modalities. We simplify later modalities away, as the meta-theory of

196 gillian

Gillian cannot account for them, given that it is formalised using a non-
step-indexed separation logic. We believe that, if Gillian is formalised
in Iris, the unfolding and folding ghost commands would be formalised
as view shifts which “take a step”, as they are formalised similarly to
primitive memory operations. This would be enough to justify the
soundness of our approach.

In addition, all described paradoxes that would arise in Iris without
step-indexing make extensive use of the impredicativity of the logic. On
the other hand, Gillian uses a predicative logic, and it is unclear that
any paradoxes could arise even without step-indexing. Unfortunately,
providing a more formal version of these arguments would either require
formalising the meta-theory of Gillian in Iris, or proving RustBelt and
RustHornBelt rules using the meta-theory of Gillian, both of which
exceed the scope of the current project.

Prophecy dependencies and type well-formedness Although not pre-
sented in the associated paper, the Coq development of RustHornBelt
attaches an additional proof obligation to the definitions of Rust types,
called ty_own_proph, which states that given an ownership predicate, we
must be able to extract the tokens for all prophecy variables occuring
in the representation. This is a crucial property for the soundness of
RustHornBelt as it ensures the absence of ‘causal loops’, prophecies
which depend on their own value.

We believe that the current implementation of Gillian-Rust naturally
enforces this constraint, thanks to a dataflow requirement imposed
on assertion definitions. In Gillian, all predicate parameters must
be declared with a mode, In or Out, such that out-parameters can
be learned by the in-parameters. For example, in the core predicate
a ↦→T v, address a and type T are in-parameters, as v can be learned
uniquely by querying the heap.

In Gillian-Rust, the ownership predicate fn own(self, repr: ...) de-
clares self to be an in-parameter and repr to be an out-parameter, and
Gillian performs an analysis which ensures that the former must be
sufficient to learn the latter. Because the ownership predicate of a
mutable reference is the only way to obtain a representation which de-
pends on prophecy variables, and this predicate provides the associated
token, it is impossible to construct an ownership predicate that does
not satisfy ty_own_proph. However, formally proving this property within
RustHornBelt is extremely difficult, as it would require a deep embed-
ding of the assertion language that would enable the formalisation of
the dataflow analysis performed by Gillian.

23.3 Unexplored topics

Finally, while our work advances the state-of-the-art when it comes
to verification of Rust programs, it does leave several related topics
unexplored.

Shared references For the moment, we do not explore shared refer-
ences and their ownership predicates. The path forward is to introduce

limitations and future work 197

another trait to the Gilsonite API, called Shareable, which allows one to
define the sharing predicate for a given type, as defined by RustBelt.
Furthermore, we would need to implement a variant of the guarded
predicate algebra which behaves according to the rules governing the
behaviour of fractured borrows, which are the shared counterpart of full
borrows for most types. Gillian-Rust would then be able to derive the
ownership predicate for shared references of type &T, where T is Shareable.
These enhancements require substantial additional work, which we
consider outside the scope of the current presentation, as it aims only
at proving the feasibility of our approach. In addition, as prophecies
are separate from the representation of shared references, it is likely
that the step between supporting them for type safety verification and
functional correctness reasoning is minimal.

Concurrency While all of our proven specifications are valid in a
concurrent context, we do not explore constructs specific to concurrency.
In particular, ownership predicates in RustBelt receive an additional
argument corresponding to a thread identifier. Types that are thread-
safe—said to be Send in Rust—may have an ownership predicate which
depends on this identifier. Our approach would have to be extended
with thread identifiers in order to prove properties about such types.

Borrows Finally, we do not model StackedBorrows1 or TreeBorrows2, 1 Jung et al., “Stacked borrows:
an aliasing model for Rust”, 2019
[Jun+19]
2 Jung et al., From Stacks to Trees:
A new aliasing model for Rust, 2023
[JV23]

which are operational semantic models of the aliasing model of Rust.
While preliminary research has been conducted on creating a logic
to reason about StackedBorrows3, symbolic reasoning in the presence

3 Louwrink, A Separation Logic for
Stacked Borrows, 2021 [Lou21]

of these models has, to our knowldge, not been performed before.
Moreover, there is still no foundational framework that marries any of
these models with the theory of semantic typing proposed by RustBelt,
and we can therefore not model them confidently within Gillian.

Chapter 24

Related work

We provide an overview of the relevant literature on unsafe Rust
verification. While there exist many tools other than Creusot for
safe Rust verification (such as Prusti1, Aeneas2, or Flux3), we do not 1 Astrauskas et al., “Leveraging rust

types for modular specification and
verification”, 2019 [Ast+19]
2 Ho et al., “Aeneas: Rust verification
by functional translation”, 2022
[HP22]
3 Lehmann et al., Flux: Liquid Types
for Rust, 2022 [Leh+22]

address them in detail as our goal is to reason about unsafe Rust. To
our knowledge, currently there exist four tools capable of performing
this reasoning—RefinedRust4, VeriFast5, Verus6, and Kani7—none of

4 Gäher et al., “RefinedRust: A
Type System for High-Assurance
Verification of Rust Programs”, 2024
[Gäh+24]
5 Foroushaani et al., Modular Formal
Verification of Rust Programs with
Unsafe Blocks, 2022 [FJ22]
6 Lattuada et al., “Verus: Verifying
Rust Programs using Linear Ghost
Types”, 2023 [Lat+23]
7 Team, How Open Source Projects
are Using Kani to Write Better
Software in Rust | AWS Open Source
Blog, 2023 [Tea23]

which explore the idea of hybrid verification.

RefinedRust In line with RefinedC8, RefinedRust9 allows users to

8 Sammler et al., “RefinedC: automat-
ing the foundational verification of C
code with refined ownership types”,
2021 [Sam+21]
9 Gäher et al., “RefinedRust: A
Type System for High-Assurance
Verification of Rust Programs”, 2024
[Gäh+24]

annotate functions with refinement types, enabling semi-automatic
verification of Rust programs with unsafe code. It compiles real-world
Rust programs into an enhanced version of RustBelt’s λRust before
performing a foundational proof in Coq: its trusted computing base is
smaller than that of Gillian-Rust, only comprising the Rust-to-λRust

compiler and Coq itself. By building on the strong foundation of
RustBelt, RefinedRust can support certain features not present in
Gillian-Rust, such as shared references.

RefinedRust extends RustBelt with new techniques for automating
and simplifying reasoning about unsafe code, in some instances au-
tomating reasoning that requires annotations in Gillian-Rust; we will
explore how these techniques can be incorporated into Gillian-Rust.

However, while RefinedRust does allow for the verification of func-
tional correctness of unsafe code, it does not explore the potential
synergy between safe and unsafe verification tools, which is the key
feature of our approach. Moreover, our preliminary evaluation suggests
that Gillian-Rust is several orders of magnitude faster than RefinedRust
for verification of unsafe code. Finally, RefinedRust requires the user
to write Iris annotations, which we believe to be a higher barrier to
entry than the traits and macros proposed by Gillian-Rust.

Importantly, the performance and lower overhead of Gillian-Rust
made it possible for us to verify the actual implementations of types
such as LinkedList and Vec from the Rust standard library, whereas the
verification of RefinedRust is done on MiniVec, a simplified version of
Vec.

VeriFast for Rust Rahimi Foroushaani et al.10 describe a Rust front- 10 Foroushaani et al., Modular For-
mal Verification of Rust Programs
with Unsafe Blocks, 2022 [FJ22]

end for VeriFast11 which provides a way of verifying semantic type safety
11 Jacobs et al., “A Quick Tour of
the VeriFast Program Verifier”, 2010
[JSP10]

for a fragment of unsafe Rust. By design, this work is similar to ours,
as both VeriFast and Gillian rely on a similar theoretical framework of
compositional symbolic execution through consumers and producers.
However, again12, VeriFast exists at a different point of the design space, 12 See the related work of the two

previous parts of the manuscriptsacrificing some automation that Gillian can provide, in exchange for

200 gillian

more speed, predictability, and a robust capacity to explore innovative
semi-automatic proof techniques. In particular, VeriFast does not
support encoding custom state models, which therefore requires manual
application of the rules which Gillian-Rust automates.

The current Rust front-end of VeriFast focuses solely on verifying
semantic type safety and not functional correctness—essentially, it
encapsulates a portion of RustBelt, but does not extend beyond it to
RustHornBelt. Furthermore, it uses an encoding of borrows which re-
quires manual management on the part of the users, while the guarded
predicate mechanism of Gillian-Rust facilitates much greater automa-
tion. Having said that, the insights of this work and VeriFast itself
have contributed to overcoming some of the difficulties encountered
during the design and implementation of Gillian-Rust.

Verus As opposed to Gillian-Rust and VeriFast, Verus13 does not 13 Lattuada et al., “Verus: Verifying
Rust Programs using Linear Ghost
Types”, 2023 [Lat+23]

use SL but rather linear ghost types to encode ownership properties.
This approach allows it to leverage the borrow checker of the Rust
compiler to drastically improve the encoding into SMT. It also means
that writing proofs feels like writing Rust code, providing a familiar
user experience.

However, Verus does not support traditional raw pointers, meaning
that it is not able to verify ‘traditional’ unsafe code. For example,
using Verus, one cannot verify the standard library implementation of
LinkedList in the way that we propose. Instead, Verus developers have
verified their own implementation of the LinkedList library, keeping track
of linear ghost objects (denoted by PointsTo<T>, a Verus primitive) to
implement links between nodes. In that sense, Verus could be considered
a verifier shallowly embedded in an extension of Rust, rather than a
Rust verifier.

In addition, since Verus does not use SL, its specification of the
heavily pointer-based invariants such as that of doubly-linked list is
more verbose than their SL counterparts. Moreover, we have found that,
for the verification of heavily pointer-based code, Verus requires many
more annotations than Gillian-Rust, as it does not have the ability
to use separation logic. Moreover, without separation logic, Verus’s
specification of a doubly-linked-list also contains universal quantifiers
that are encoded into SMT, while Gillian-Rust’s version of the same
specification is entirely quantifier-free.

Finally, Verus cannot currently reason about functions that return
mutable references.

Kani Kani14 is a bounded model checker for Rust, which compiles 14 Team, How Open Source Projects
are Using Kani to Write Better
Software in Rust | AWS Open Source
Blog, 2023 [Tea23]

Rust to the intermediate representation ingested by CBMC15 for its

15 Clarke et al., “A Tool for Checking
ANSI-C Programs”, 2004 [CKL04]

analysis. While Kani is a well-engineered tool of industrial-strength,
which covers an impressive fragment of the existing Rust language, it
does not propose solutions to the challenges solved by our work.

First, as it uses CBMC as a back-end, it performs bounded model
checking rather than unbounded verification, which is our current task.
Kani encodes Rust programs into a C-like representation, instantiating
a specific layout for each structure, and performing model checking

related work 201

in that context. As a result, layout-sensitive Rust code is beyond the
current ability of Kani. Finally, Kani treats all safe and unsafe code
alike, and, as such, is unable to leverage any of the safe Rust guarantees
to enhance analysis, unlike our hybrid approach.

Chapter 25

Future work

In this manuscript, we have presented a sound, flexible, and expres-
sive formalisation of Gillian, and demonstrated the applicability of the
framework to the C and Rust programming languages. Gillian, nonethe-
less, very much remains an open area of research and, to conclude, we
propose several avenues for future exploration.

Firstly, as the development of Gillian-Rust is in its early stages, one
immediate objective would be to properly address the limitations that
have been identified in Chapter 23.

Second, we have started questioning the necessity of an intermediate
language, such as GIL or SIGIL. A potentially more efficient strategy
would involve crafting a compositional symbolic interpreter directly
tailored to a specific target language or a target-specific intermediate
language, such as MIR for Rust. This approach could reduce imple-
mentation errors and simplify maintenance. Additionally, it could
significantly enhance the user interface by allowing error messages to
be directly communicated in the target language, thereby eliminating
the cumbersome process of “error message lifting”.

In order to write such compositional symbolic interpreters for di-
verse languages without repetitive re-implementation, we would need to
build a comprehensive library of essential functions. This manuscript
constitutes a preliminary step, introducing components such as the
symbolic execution monad and a sound parametric specification ex-
ecution function. However, further work is required to validate the
flexibility of this approach and expand the meta-theoretical framework
in order to be able to model it.

Thirdly, it could be the case that Resource Algebras à la Iris are more
suitable than PCMs for defining compositional state models, leading us
to consider a new formalisation of Gillian based directly on Iris. Using
RAs could solidify the connections between Gillian-Rust, RustBelt, and
RustHornBelt, with direct proofs in Iris. Within such a framework,
two strategies would enhance trust in Gillian: extending its engine to
produce Iris proofs during symbolic execution for external verification
or validating the soundness of the engine directly in Coq, thus reducing
the TCB to the soundness of Coq and of the SMT solver.

Finally, Gillian could be applied to code written using several lan-
guages and foreign function interfaces (FFIs). For example, the Melo-
coton1,2 project introduces Iris rules for reasoning about OCaml code 1 Guéneau et al., “Melocoton: A

Program Logic for Verified Interoper-
ability Between OCaml and C”, 2023
[Gué+23]
2 This idea came after the creators
of Melocoton asked us about the
potential applicability of Gillian to
the automation of the Melocoton Iris
rules.

that uses C FFI. The Melocoton logic has distinct points-to predicates
for OCaml and C views of the memory, and rules that convert between
the OCaml and C representations. This conversion process resembles
combining smaller contiguous points-to predicates in C into a larger
one. Gillian’s unique flexibility for symbolic memory representation
could facilitate the automation of Melocoton rules, as it did for C.

206 gillian

Bibliography

[AJP15] Pieter Agten, Bart Jacobs, and Frank Piessens. “Sound Modular Verification of C Code Executing
in an Unverified Context”. In: ACM SIGPLAN Notices 50.1 (Jan. 2015), pp. 581–594. issn:
0362-1340. doi: 10.1145/2775051.2676972. url: https://dl.acm.org/doi/10.1145/2775051.
2676972 (visited on 04/30/2024).

[Ama24a] Amazon Web Services. AWS Encryption SDK message format reference - AWS Encryption
SDK. 2024. url: https://docs.aws.amazon.com/encryption- sdk/latest/developer-

guide/message-format.html#header-structure (visited on 05/05/2024).

[Ama24b] Amazon Web Services. aws/aws-encryption-sdk-c. original-date: 2018-01-09T18:28:20Z. May
2024. url: https://github.com/aws/aws-encryption-sdk-c (visited on 05/05/2024).

[App11a] Andrew W. Appel. “Verified Software Toolchain”. en. In: Programming Languages and Systems.
Ed. by Gilles Barthe. Berlin, Heidelberg: Springer, 2011, pp. 1–17. isbn: 978-3-642-19718-5.
doi: 10.1007/978-3-642-19718-5_1.

[App11b] Andrew W. Appel. “VeriSmall: Verified Smallfoot Shape Analysis”. In: Certified Programs and
Proofs. Ed. by Jean-Pierre Jouannaud and Zhong Shao. Berlin, Heidelberg: Springer, 2011,
pp. 231–246. isbn: 978-3-642-25379-9. doi: 10.1007/978-3-642-25379-9_18.

[Ast+19] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. “Leveraging rust
types for modular specification and verification”. In: Proceedings of the ACM on Programming
Languages 3.OOPSLA (Oct. 2019), 147:1–147:30. doi: 10.1145/3360573. url: https://doi.
org/10.1145/3360573 (visited on 01/05/2023).

[Ast+20] Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller, and Alexander J. Summers.
“How do programmers use unsafe Rust?” In: Proceedings of the ACM on Programming Languages
4.OOPSLA (Nov. 2020), 136:1–136:27. doi: 10.1145/3428204. url: https://dl.acm.org/doi/
10.1145/3428204 (visited on 11/17/2023).

[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck. “Detecting equality of variables in programs”. In:
Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. POPL ’88. New York, NY, USA: Association for Computing Machinery, Jan. 1988,
pp. 1–11. isbn: 978-0-89791-252-5. doi: 10.1145/73560.73561. url: https://dl.acm.org/
doi/10.1145/73560.73561 (visited on 11/30/2023).

[Ayo+25] Sacha-Élie Ayoun, Xavier Denis, Petar Maksimović, and Philippa Gardner. “A hybrid approach
to semi-automated Rust verification”. In: Proceedings of the 46th ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation. PLDI 2025. Cham:
Association for Computing Machinery, June 2025.

[Ayo19a] Sacha-Élie Ayoun. fix buffer overflow - Collections-C - Github. 2019. url: https://github.
com/srdja/Collections-C/pull/119 (visited on 05/13/2024).

[Ayo19b] Sacha-Élie Ayoun. fix djb2 string hash function - Collections-C - Github. 2019. url: https:
//github.com/srdja/Collections-C/pull/126 (visited on 05/13/2024).

[Ayo19c] Sacha-Élie Ayoun. fix over allocation of ring_buffers - Collections-C - Github. 2019. url:
https://github.com/srdja/Collections-C/pull/125 (visited on 05/13/2024).

[Ayo19d] Sacha-Élie Ayoun. Fix some tests in the list test suite - Collections-C - Github. 2019. url:
https://github.com/srdja/Collections-C/pull/123 (visited on 05/13/2024).

https://doi.org/10.1145/2775051.2676972
https://dl.acm.org/doi/10.1145/2775051.2676972
https://dl.acm.org/doi/10.1145/2775051.2676972
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html#header-structure
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html#header-structure
https://github.com/aws/aws-encryption-sdk-c
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-25379-9_18
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3428204
https://dl.acm.org/doi/10.1145/3428204
https://dl.acm.org/doi/10.1145/3428204
https://doi.org/10.1145/73560.73561
https://dl.acm.org/doi/10.1145/73560.73561
https://dl.acm.org/doi/10.1145/73560.73561
https://github.com/srdja/Collections-C/pull/119
https://github.com/srdja/Collections-C/pull/119
https://github.com/srdja/Collections-C/pull/126
https://github.com/srdja/Collections-C/pull/126
https://github.com/srdja/Collections-C/pull/125
https://github.com/srdja/Collections-C/pull/123

208 gillian

[Ayo19e] Sacha-Élie Ayoun. remove the usage of cc_comp_ptr everywhere - Collections-C - Github. 2019.
url: https://github.com/srdja/Collections-C/pull/122 (visited on 05/13/2024).

[Ayo21a] Sacha-Élie Ayoun. Correctly fail on invalid aad length - aws-encryption-sdk-c - Github. 2021.
url: https://github.com/aws/aws-encryption-sdk-c/pull/696 (visited on 05/13/2024).

[Ayo21b] Sacha-Élie Ayoun. Small over allocation in each aws_string - aws-c-common - Github. 2021.
url: https://github.com/awslabs/aws-c-common/issues/776 (visited on 05/13/2024).

[Ayo21c] Sacha-Élie Ayoun. Undefined Behaviour corner case for aws_byte_cursor_advance - aws-c-
common - Github. 2021. url: https://github.com/awslabs/aws- c- common/issues/771

(visited on 05/13/2024).

[Ayo22] Sacha-Élie Ayoun. Kanillian - Github. 2022. url: https://github.com/giltho/kanillian
(visited on 05/13/2024).

[Bar+22] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,
Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir,
Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. “cvc5: A
Versatile and Industrial-Strength SMT Solver”. en. In: Tools and Algorithms for the Construction
and Analysis of Systems. Ed. by Dana Fisman and Grigore Rosu. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2022, pp. 415–442. isbn: 978-3-030-99524-9.
doi: 10.1007/978-3-030-99524-9_24.

[BCO06] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. “Smallfoot: Modular Automatic
Assertion Checking with Separation Logic”. en. In: Formal Methods for Components and Objects.
Ed. by Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 115–137. isbn:
978-3-540-36750-5. doi: 10.1007/11804192_6.

[BEL75] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. “SELECT—a formal system for testing
and debugging programs by symbolic execution”. In: Proceedings of the international conference
on Reliable software. New York, NY, USA: Association for Computing Machinery, Apr. 1975,
pp. 234–245. isbn: 978-1-4503-7385-2. doi: 10.1145/800027.808445. url: https://dl.acm.
org/doi/10.1145/800027.808445 (visited on 08/18/2023).

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org. 2016.

[BKC14] Stefan Bucur, Johannes Kinder, and George Candea. “Prototyping symbolic execution engines
for interpreted languages”. In: ACM SIGARCH Computer Architecture News 42.1 (Feb. 2014),
pp. 239–254. issn: 0163-5964. doi: 10.1145/2654822.2541977. url: https://dl.acm.org/
doi/10.1145/2654822.2541977 (visited on 05/01/2024).

[Blo+17] Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. “The VerCors Tool Set:
Verification of Parallel and Concurrent Software”. en. In: Integrated Formal Methods. Ed. by
Nadia Polikarpova and Steve Schneider. Cham: Springer International Publishing, 2017, pp. 102–
110. isbn: 978-3-319-66845-1. doi: 10.1007/978-3-319-66845-1_7.

[Bor+05] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. “Permission
accounting in separation logic”. In: ACM SIGPLAN Notices 40.1 (Jan. 2005), pp. 259–270.
issn: 0362-1340. doi: 10.1145/1047659.1040327. url: https://dl.acm.org/doi/10.1145/
1047659.1040327 (visited on 02/27/2024).

[Bot+11] Matko Botinčan, Dino Distefano, Mike Dodds, Radu Grigora, Daiva Naudžiūnienė, and Matthew
J. Parkinson. “coreStar: the Core of jStar”. In: Boogie 2011. 2011.

https://github.com/srdja/Collections-C/pull/122
https://github.com/aws/aws-encryption-sdk-c/pull/696
https://github.com/awslabs/aws-c-common/issues/776
https://github.com/awslabs/aws-c-common/issues/771
https://github.com/giltho/kanillian
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/11804192_6
https://doi.org/10.1145/800027.808445
https://dl.acm.org/doi/10.1145/800027.808445
https://dl.acm.org/doi/10.1145/800027.808445
https://doi.org/10.1145/2654822.2541977
https://dl.acm.org/doi/10.1145/2654822.2541977
https://dl.acm.org/doi/10.1145/2654822.2541977
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1145/1047659.1040327
https://dl.acm.org/doi/10.1145/1047659.1040327
https://dl.acm.org/doi/10.1145/1047659.1040327

BIBLIOGRAPHY 209

[BPS09] Matko Botinčan, Matthew Parkinson, and Wolfram Schulte. “Separation Logic Verification of
C Programs with an SMT Solver”. en. In: Electronic Notes in Theoretical Computer Science.
Proceedings of the 4th International Workshop on Systems Software Verification (SSV 2009)
254 (Oct. 2009), pp. 5–23. issn: 1571-0661. doi: 10.1016/j.entcs.2009.09.057. url:
https://www.sciencedirect.com/science/article/pii/S1571066109004113 (visited on
01/05/2023).

[Cad+08] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. “EXE:
Automatically Generating Inputs of Death”. In: ACM Transactions on Information and System
Security 12.2 (Dec. 2008), 10:1–10:38. issn: 1094-9224. doi: 10.1145/1455518.1455522. url:
https://dl.acm.org/doi/10.1145/1455518.1455522 (visited on 05/13/2024).

[Cal+09] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. “Compositional shape
analysis by means of bi-abduction”. In: ACM SIGPLAN Notices 44.1 (Jan. 2009), pp. 289–300.
issn: 0362-1340. doi: 10.1145/1594834.1480917. url: https://doi.org/10.1145/1594834.
1480917 (visited on 01/05/2023).

[CD11] Cristiano Calcagno and Dino Distefano. “Infer: An Automatic Program Verifier for Memory
Safety of C Programs”. en. In: NASA Formal Methods. Ed. by Mihaela Bobaru, Klaus Havelund,
Gerard J. Holzmann, and Rajeev Joshi. Berlin, Heidelberg: Springer, 2011, pp. 459–465. isbn:
978-3-642-20398-5. doi: 10.1007/978-3-642-20398-5_33.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: unassisted and automatic genera-
tion of high-coverage tests for complex systems programs”. In: Proceedings of the 8th USENIX
conference on Operating systems design and implementation. OSDI’08. USA: USENIX Associa-
tion, Dec. 2008, pp. 209–224. (Visited on 08/21/2023).

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for Checking ANSI-C Programs”.
en. In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by Kurt Jensen
and Andreas Podelski. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2004,
pp. 168–176. isbn: 978-3-540-24730-2. doi: 10.1007/978-3-540-24730-2_15.

[Coo22] Kees Cook. [GIT PULL] Rust introduction for v6.1-rc1. https://lore.kernel.org/lkml/
202210010816.1317F2C@keescook. Accessed: Nov. 16th 2023. Oct. 2022. (Visited on 11/16/2023).

[Cou+05] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, Antoine Miné, David
Monniaux, and Xavier Rival. “The ASTREÉ Analyzer”. en. In: Programming Languages and
Systems. Ed. by Mooly Sagiv. Berlin, Heidelberg: Springer, 2005, pp. 21–30. isbn: 978-3-540-
31987-0. doi: 10.1007/978-3-540-31987-0_3.

[CR08] Bor-Yuh Evan Chang and Xavier Rival. “Relational inductive shape analysis”. In: ACM SIGPLAN
Notices 43.1 (Jan. 2008), pp. 247–260. issn: 0362-1340. doi: 10.1145/1328897.1328469. url:
https://dl.acm.org/doi/10.1145/1328897.1328469 (visited on 03/17/2023).

[CS23] Arthur Correnson and Dominic Steinhöfel. “Engineering a Formally Verified Automated Bug
Finder”. In: Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ESEC/FSE 2023. New York, NY, USA:
Association for Computing Machinery, Nov. 2023, pp. 1165–1176. isbn: 9798400703270. doi:
10.1145/3611643.3616290. url: https://dl.acm.org/doi/10.1145/3611643.3616290 (visited
on 02/09/2024).

[Dar+22] Thibault Dardinier, Gaurav Parthasarathy, Noé Weeks, Peter Müller, and Alexander J. Summers.
“Sound Automation of Magic Wands”. en. In: Computer Aided Verification. Ed. by Sharon
Shoham and Yakir Vizel. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2022, pp. 130–151. isbn: 978-3-031-13188-2. doi: 10.1007/978-3-031-13188-2_7.

https://doi.org/10.1016/j.entcs.2009.09.057
https://www.sciencedirect.com/science/article/pii/S1571066109004113
https://doi.org/10.1145/1455518.1455522
https://dl.acm.org/doi/10.1145/1455518.1455522
https://doi.org/10.1145/1594834.1480917
https://doi.org/10.1145/1594834.1480917
https://doi.org/10.1145/1594834.1480917
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-540-24730-2_15
https://lore.kernel.org/lkml/202210010816.1317F2C@keescook
https://lore.kernel.org/lkml/202210010816.1317F2C@keescook
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1145/1328897.1328469
https://dl.acm.org/doi/10.1145/1328897.1328469
https://doi.org/10.1145/3611643.3616290
https://dl.acm.org/doi/10.1145/3611643.3616290
https://doi.org/10.1007/978-3-031-13188-2_7

210 gillian

[DB08] Leonardo De Moura and Nikolaj Bjørner. “Z3: an efficient SMT solver”. In: Proceedings of the
Theory and practice of software, 14th international conference on Tools and algorithms for the
construction and analysis of systems. TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-Verlag,
Mar. 2008, pp. 337–340. isbn: 978-3-540-78799-0. (Visited on 08/18/2023).

[Dev19] Dominique Devriese. “Modular Effects in Haskell through Effect Polymorphism and Explicit
Dictionary Applications: A New Approach and the µVeriFast Verifier as a Case Study”. In:
Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell. Haskell 2019.
New York, NY, USA: Association for Computing Machinery, Aug. 2019, pp. 1–14. isbn:
978-1-4503-6813-1. doi: 10.1145/3331545.3342589. (Visited on 03/22/2025).

[Dis+19] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. “Scaling static
analyses at Facebook”. In: Communications of the ACM 62.8 (July 2019), pp. 62–70. issn:
0001-0782. doi: 10.1145/3338112. url: https://dl.acm.org/doi/10.1145/3338112 (visited
on 04/11/2024).

[Dis09] Dino Distefano. “Attacking Large Industrial Code with Bi-abductive Inference”. en. In: Formal
Methods for Industrial Critical Systems. Ed. by María Alpuente, Byron Cook, and Christophe
Joubert. Berlin, Heidelberg: Springer, 2009, pp. 1–8. isbn: 978-3-642-04570-7. doi: 10.1007/978-
3-642-04570-7_1.

[DJ23] Xavier Denis and Jacques-Henri Jourdan. “Specifying and Verifying Higher-order Rust Iterators”.
en. In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by Sriram
Sankaranarayanan and Natasha Sharygina. Lecture Notes in Computer Science. Cham: Springer
Nature Switzerland, 2023, pp. 93–110. isbn: 978-3-031-30820-8. doi: 10.1007/978-3-031-
30820-8_9.

[DJM22] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. “Creusot: a Foundry for the Deductive
Verification of Rust Programs”. en. In: Springer Verlag, Oct. 2022. url: https://hal.inria.
fr/hal-03737878 (visited on 01/03/2023).

[DP08] Dino Distefano and Matthew J. Parkinson J. “jStar: towards practical verification for Java”.
In: ACM SIGPLAN Notices 43.10 (Oct. 2008), pp. 213–226. issn: 0362-1340. doi: 10.1145/
1449955.1449782. url: https://dl.acm.org/doi/10.1145/1449955.1449782 (visited on
04/21/2024).

[Ecm23] Ecma International. ECMAScript 2023 Language Specification. 2023. url: https://www.ecma-
international.org/publications-and-standards/standards/ecma-262/.

[EM18] Marco Eilers and Peter Müller. “Nagini: A Static Verifier for Python”. en. In: Computer Aided
Verification. Ed. by Hana Chockler and Georg Weissenbacher. Cham: Springer International
Publishing, 2018, pp. 596–603. isbn: 978-3-319-96145-3. doi: 10.1007/978-3-319-96145-3_33.

[FFF09] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with PLT
Redex. The MIT Press, 2009. isbn: 978-0-262-06275-6.

[FJ22] Nima Rahimi Foroushaani and Bart Jacobs. Modular Formal Verification of Rust Programs
with Unsafe Blocks. arXiv:2212.12976 [cs]. Dec. 2022. doi: 10.48550/arXiv.2212.12976. url:
http://arxiv.org/abs/2212.12976 (visited on 03/03/2023).

[Fra+17] José Fragoso Santos, Petar Maksimović, Daiva Naudžiūnienė, Thomas Wood, and Philippa
Gardner. “JaVerT: JavaScript verification toolchain”. In: Proc. ACM Program. Lang. 2.POPL
(Dec. 2017), 50:1–50:33. doi: 10.1145/3158138. url: https://dl.acm.org/doi/10.1145/
3158138 (visited on 09/13/2024).

[Fra+19] José Fragoso Santos, Petar Maksimović, Gabriela Sampaio, and Philippa Gardner. “JaVerT 2.0:
compositional symbolic execution for JavaScript”. In: Proceedings of the ACM on Programming
Languages 3.POPL (Jan. 2019), 66:1–66:31. doi: 10.1145/3290379. url: https://doi.org/10.
1145/3290379 (visited on 01/12/2023).

https://doi.org/10.1145/3331545.3342589
https://doi.org/10.1145/3338112
https://dl.acm.org/doi/10.1145/3338112
https://doi.org/10.1007/978-3-642-04570-7_1
https://doi.org/10.1007/978-3-642-04570-7_1
https://doi.org/10.1007/978-3-031-30820-8_9
https://doi.org/10.1007/978-3-031-30820-8_9
https://hal.inria.fr/hal-03737878
https://hal.inria.fr/hal-03737878
https://doi.org/10.1145/1449955.1449782
https://doi.org/10.1145/1449955.1449782
https://dl.acm.org/doi/10.1145/1449955.1449782
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.48550/arXiv.2212.12976
http://arxiv.org/abs/2212.12976
https://doi.org/10.1145/3158138
https://dl.acm.org/doi/10.1145/3158138
https://dl.acm.org/doi/10.1145/3158138
https://doi.org/10.1145/3290379
https://doi.org/10.1145/3290379
https://doi.org/10.1145/3290379

BIBLIOGRAPHY 211

[Fra+20] José Fragoso Santos, Petar Maksimović, Sacha-Élie Ayoun, and Philippa Gardner. “Gillian, part
I: a multi-language platform for symbolic execution”. In: Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI 2020. New York, NY,
USA: Association for Computing Machinery, June 2020, pp. 927–942. isbn: 978-1-4503-7613-6.
doi: 10.1145/3385412.3386014. url: https://doi.org/10.1145/3385412.3386014 (visited
on 11/23/2022).

[Gäh+24] Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer. “RefinedRust:
A Type System for High-Assurance Verification of Rust Programs”. In: Proc. ACM Program.
Lang. PLDI (2024). doi: 10.1145/3656422. url: https://doi.org/10.1145/3656422.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: directed automated random
testing”. In: ACM SIGPLAN Notices 40.6 (June 2005), pp. 213–223. issn: 0362-1340. doi:
10.1145/1064978.1065036. url: https://dl.acm.org/doi/10.1145/1064978.1065036 (visited
on 05/13/2024).

[GLM08] Patrice Godefroid, Michael Y Levin, and David Molnar. “Automated Whitebox Fuzz Testing”.
en. In: (2008).

[GMS12] Philippa Anne Gardner, Sergio Maffeis, and Gareth David Smith. “Towards a program logic for
JavaScript”. In: ACM SIGPLAN Notices 47.1 (Jan. 2012), pp. 31–44. issn: 0362-1340. doi:
10.1145/2103621.2103663. url: https://dl.acm.org/doi/10.1145/2103621.2103663 (visited
on 04/21/2024).

[GNR09] Patrice Godefroid, Aditya Nori, and Sriram Rajamani. “Compositional May-Must Program
Analysis: Unleashing The Power of Alternation”. en-US. In: (Jan. 2009). url: https://www.
microsoft.com/en-us/research/publication/compositional-may-must-program-analysis-

unleashing-the-power-of-alternation/ (visited on 01/27/2023).

[GNU24] GNU GCC developers. Program Instrumentation Options - GNU GCC. 2024. url: https:
//gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html (visited on 05/13/2024).

[Gro23] Unsafe Code Guidelines Working Group. Structs and Tuples - Memory Layout - Unsafe Code
Guidelines. Accessed: Nov. 16 2019. 2023. url: https://github.com/rust-lang/unsafe-code-
guidelines / blob / 50f8ff4b6892f98740de3b375e4d4bda10b9da9f / reference / src / layout /

structs-and-tuples.md.

[Gué+23] Armaël Guéneau, Johannes Hostert, Simon Spies, Michael Sammler, Lars Birkedal, and Derek
Dreyer. “Melocoton: A Program Logic for Verified Interoperability Between OCaml and C”.
In: Proceedings of the ACM on Programming Languages 7.OOPSLA2 (Oct. 2023), 247:716–
247:744. doi: 10.1145/3622823. url: https://dl.acm.org/doi/10.1145/3622823 (visited on
12/06/2023).

[Hal+13] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. “Dowsing for
overflows: a guided fuzzer to find buffer boundary violations”. In: Proceedings of the 22nd
USENIX conference on Security. SEC’13. USA: USENIX Association, Aug. 2013, pp. 49–64.
isbn: 978-1-931971-03-4. (Visited on 05/13/2024).

[HP22] Son Ho and Jonathan Protzenko. “Aeneas: Rust verification by functional translation”. In:
Proceedings of the ACM on Programming Languages 6.ICFP (Aug. 2022), 116:711–116:741. doi:
10.1145/3547647. url: https://doi.org/10.1145/3547647 (visited on 01/05/2023).

[ILR21] Hugo Illous, Matthieu Lemerre, and Xavier Rival. “A relational shape abstract domain”. en.
In: Formal Methods in System Design 57.3 (Sept. 2021), pp. 343–400. issn: 1572-8102. doi:
10.1007/s10703-021-00366-4. url: https://doi.org/10.1007/s10703-021-00366-4 (visited
on 03/17/2023).

[Int18] International Organization for Standardization. ISO/IEC 9899:2018 - Information technology –
Programming languages – C. June 2018. url: https://www.iso.org/standard/74528.html.

https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/3656422
https://doi.org/10.1145/3656422
https://doi.org/10.1145/1064978.1065036
https://dl.acm.org/doi/10.1145/1064978.1065036
https://doi.org/10.1145/2103621.2103663
https://dl.acm.org/doi/10.1145/2103621.2103663
https://www.microsoft.com/en-us/research/publication/compositional-may-must-program-analysis-unleashing-the-power-of-alternation/
https://www.microsoft.com/en-us/research/publication/compositional-may-must-program-analysis-unleashing-the-power-of-alternation/
https://www.microsoft.com/en-us/research/publication/compositional-may-must-program-analysis-unleashing-the-power-of-alternation/
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://github.com/rust-lang/unsafe-code-guidelines/blob/50f8ff4b6892f98740de3b375e4d4bda10b9da9f/reference/src/layout/structs-and-tuples.md
https://github.com/rust-lang/unsafe-code-guidelines/blob/50f8ff4b6892f98740de3b375e4d4bda10b9da9f/reference/src/layout/structs-and-tuples.md
https://github.com/rust-lang/unsafe-code-guidelines/blob/50f8ff4b6892f98740de3b375e4d4bda10b9da9f/reference/src/layout/structs-and-tuples.md
https://doi.org/10.1145/3622823
https://dl.acm.org/doi/10.1145/3622823
https://doi.org/10.1145/3547647
https://doi.org/10.1145/3547647
https://doi.org/10.1007/s10703-021-00366-4
https://doi.org/10.1007/s10703-021-00366-4
https://www.iso.org/standard/74528.html

212 gillian

[Jac+11] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. “VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java”. en. In: NASA
Formal Methods. Ed. by Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev
Joshi. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 41–55. isbn:
978-3-642-20398-5. doi: 10.1007/978-3-642-20398-5_4.

[JP11] Bart Jacobs and Frank Piessens. “Expressive modular fine-grained concurrency specification”.
In: Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. POPL ’11. New York, NY, USA: Association for Computing Machinery,
Jan. 2011, pp. 271–282. isbn: 978-1-4503-0490-0. doi: 10.1145/1926385.1926417. url:
https://dl.acm.org/doi/10.1145/1926385.1926417 (visited on 04/22/2024).

[JSP10] Bart Jacobs, Jan Smans, and Frank Piessens. “A Quick Tour of the VeriFast Program Verifier”.
en. In: Programming Languages and Systems. Ed. by Kazunori Ueda. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2010, pp. 304–311. isbn: 978-3-642-17164-2. doi: 10.
1007/978-3-642-17164-2_21.

[Jun+17] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “RustBelt: securing the
foundations of the Rust programming language”. In: Proceedings of the ACM on Programming
Languages 2.POPL (Dec. 2017), 66:1–66:34. doi: 10.1145/3158154. url: https://doi.org/
10.1145/3158154 (visited on 01/05/2023).

[Jun+18] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek
Dreyer. “Iris from the ground up: A modular foundation for higher-order concurrent separation
logic”. en. In: Journal of Functional Programming 28 (2018), e20. issn: 0956-7968, 1469-
7653. doi: 10.1017/S0956796818000151. url: https://www.cambridge.org/core/product/
identifier/S0956796818000151/type/journal_article (visited on 02/25/2023).

[Jun+19] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. “Stacked borrows: an aliasing
model for Rust”. In: Proceedings of the ACM on Programming Languages 4.POPL (Dec. 2019),
41:1–41:32. doi: 10.1145/3371109. url: https://doi.org/10.1145/3371109 (visited on
01/05/2023).

[Jun+20] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek
Dreyer, and Bart Jacobs. “The future is ours: prophecy variables in separation logic”. en. In:
Proceedings of the ACM on Programming Languages 4.POPL (Jan. 2020), pp. 1–32. issn:
2475-1421. doi: 10.1145/3371113. url: https://dl.acm.org/doi/10.1145/3371113 (visited
on 02/23/2023).

[Jun18] Ralf Jung. Two Kinds of Invariants: Safety and Validity. English. Blog. Aug. 2018. url:
https://www.ralfj.de/blog/2018/08/22/two- kinds- of- invariants.html (visited on
06/19/2023).

[Jun20] Ralf Jung. “Understanding and evolving the Rust programming language”. en. Accepted: 2020-
09-09T07:57:28Z. doctoralThesis. Saarländische Universitäts- und Landesbibliothek, 2020. doi:
10.22028/D291-31946. url: https://publikationen.sulb.uni-saarland.de/handle/20.500.
11880/29647 (visited on 02/08/2023).

[JV23] Ralf Jung and Neven Villani. From Stacks to Trees: A new aliasing model for Rust. Accessed:
Nov. 16 2019. June 2023. url: https://www.ralfj.de/blog/2023/06/02/tree-borrows.html.

[JVP15] Bart Jacobs, Frédéric Vogels, and Frank Piessens. “Featherweight VeriFast”. en. In: Logical
Methods in Computer Science Volume 11, Issue 3 (Sept. 2015), p. 1595. issn: 1860-5974.
doi: 10.2168/LMCS-11(3:19)2015. url: https://lmcs.episciences.org/1595 (visited on
07/26/2023).

https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/1926385.1926417
https://dl.acm.org/doi/10.1145/1926385.1926417
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://www.cambridge.org/core/product/identifier/S0956796818000151/type/journal_article
https://www.cambridge.org/core/product/identifier/S0956796818000151/type/journal_article
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3371113
https://dl.acm.org/doi/10.1145/3371113
https://www.ralfj.de/blog/2018/08/22/two-kinds-of-invariants.html
https://doi.org/10.22028/D291-31946
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://www.ralfj.de/blog/2023/06/02/tree-borrows.html
https://doi.org/10.2168/LMCS-11(3:19)2015
https://lmcs.episciences.org/1595

BIBLIOGRAPHY 213

[KAG23] Nat Karmios, Sacha-Élie Ayoun, and Philippa Gardner. “Symbolic Debugging with Gillian”. In:
Proceedings of the 1st ACM International Workshop on Future Debugging Techniques. DEBT
2023. New York, NY, USA: Association for Computing Machinery, July 2023, pp. 1–2. isbn:
9798400702457. doi: 10.1145/3605155.3605861. url: https://dl.acm.org/doi/10.1145/
3605155.3605861 (visited on 10/26/2023).

[Keu+22] Steven Keuchel, Sander Huyghebaert, Georgy Lukyanov, and Dominique Devriese. “Verified
symbolic execution with Kripke specification monads (and no meta-programming)”. en. In:
Proceedings of the ACM on Programming Languages 6.ICFP (Aug. 2022), pp. 194–224. issn:
2475-1421. doi: 10.1145/3547628. url: https://dl.acm.org/doi/10.1145/3547628 (visited
on 07/09/2023).

[Kin76] James C. King. “Symbolic execution and program testing”. In: Communications of the ACM
19.7 (July 1976), pp. 385–394. issn: 0001-0782. doi: 10.1145/360248.360252. url: https:
//dl.acm.org/doi/10.1145/360248.360252 (visited on 08/18/2023).

[Kir+15] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski.
“Frama-C: A software analysis perspective”. en. In: Formal Aspects of Computing 27.3 (May
2015), pp. 573–609. issn: 1433-299X. doi: 10 . 1007 / s00165 - 014 - 0326 - 7. url: https :

//doi.org/10.1007/s00165-014-0326-7 (visited on 05/13/2024).

[Lat+23] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou,
Jon Howell, Bryan Parno, and Chris Hawblitzel. “Verus: Verifying Rust Programs using Linear
Ghost Types”. In: Proceedings of the ACM on Programming Languages 7.OOPSLA1 (Apr. 2023),
85:286–85:315. doi: 10.1145/3586037. url: https://dl.acm.org/doi/10.1145/3586037
(visited on 05/23/2023).

[LB08] Xavier Leroy and Sandrine Blazy. “Formal Verification of a C-like Memory Model and Its
Uses for Verifying Program Transformations”. en. In: Journal of Automated Reasoning 41.1
(July 2008), pp. 1–31. issn: 1573-0670. doi: 10.1007/s10817- 008- 9099- 0. url: https:

//doi.org/10.1007/s10817-008-9099-0 (visited on 05/13/2024).

[LB23] Sirui Lu and Rastislav Bodík. “Grisette: Symbolic Compilation as a Functional Programming
Library”. In: Proceedings of the ACM on Programming Languages 7.POPL (Jan. 2023), 16:455–
16:487. doi: 10.1145/3571209. url: https://dl.acm.org/doi/10.1145/3571209 (visited on
04/01/2024).

[Le+22] Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn.
“Finding real bugs in big programs with incorrectness logic”. In: Proceedings of the ACM on
Programming Languages 6.OOPSLA1 (Apr. 2022), 81:1–81:27. doi: 10.1145/3527325. url:
https://doi.org/10.1145/3527325 (visited on 01/06/2023).

[Leh+22] Nico Lehmann, Adam Geller, Niki Vazou, and Ranjit Jhala. Flux: Liquid Types for Rust.
arXiv:2207.04034 [cs]. Nov. 2022. doi: 10.48550/arXiv.2207.04034. url: http://arxiv.org/
abs/2207.04034 (visited on 05/22/2023).

[Lei08] K. Rustan M. Leino. “This is Boogie 2”. en-US. In: (June 2008). url: https://www.microsoft.
com/en-us/research/publication/this-is-boogie-2-2/ (visited on 04/30/2024).

[Ler+12] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. “The CompCert Memory
Model, Version 2”. en. Pages: 26. report. INRIA, June 2012. url: https://hal.inria.fr/hal-
00703441 (visited on 12/23/2022).

[Ler09a] Xavier Leroy. “A Formally Verified Compiler Back-end”. en. In: Journal of Automated Reasoning
43.4 (Dec. 2009), pp. 363–446. issn: 1573-0670. doi: 10.1007/s10817-009-9155-4. url:
https://doi.org/10.1007/s10817-009-9155-4 (visited on 05/13/2024).

https://doi.org/10.1145/3605155.3605861
https://dl.acm.org/doi/10.1145/3605155.3605861
https://dl.acm.org/doi/10.1145/3605155.3605861
https://doi.org/10.1145/3547628
https://dl.acm.org/doi/10.1145/3547628
https://doi.org/10.1145/360248.360252
https://dl.acm.org/doi/10.1145/360248.360252
https://dl.acm.org/doi/10.1145/360248.360252
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1145/3586037
https://dl.acm.org/doi/10.1145/3586037
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/3571209
https://dl.acm.org/doi/10.1145/3571209
https://doi.org/10.1145/3527325
https://doi.org/10.1145/3527325
https://doi.org/10.48550/arXiv.2207.04034
http://arxiv.org/abs/2207.04034
http://arxiv.org/abs/2207.04034
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://hal.inria.fr/hal-00703441
https://hal.inria.fr/hal-00703441
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4

214 gillian

[Ler09b] Xavier Leroy. “Formal verification of a realistic compiler”. In: Communications of the ACM
52.7 (July 2009), pp. 107–115. issn: 0001-0782. doi: 10.1145/1538788.1538814. url: https:
//dl.acm.org/doi/10.1145/1538788.1538814 (visited on 04/05/2024).

[Ler23] Xavier Leroy. The CompCert C Compiler. CompCert. Accessed: 2024-05-13. 2023. url: https:
//compcert.org/compcert-C.html.

[Löö+24a] Andreas Lööw, Daniele Nantes-Sobrinho, Sacha-Élie Ayoun, Caroline Cronjäger, Petar Maksi-
mović, and Philippa Gardner. “Compositional Symbolic Execution for Correctness and Incor-
rectness Reasoning”. In: 38th European Conference on Object-Oriented Programming (ECOOP
2023). Ed. by Jonathan Aldrich and Guido Salvaneschi. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2024, 12:1–12:28. doi: 10.4230/LIPIcs.ECOOP.2024.12. url: https://drops.dagstuhl.de/
entities/document/10.4230/LIPIcs.ECOOP.2024.12.

[Löö+24b] Andreas Lööw, Daniele Nantes-Sobrinho, Sacha-Élie Ayoun, Petar Maksimović, and Philippa
Gardner. “Matching Plans for Frame Inference in Compositional Reasoning”. In: 38th European
Conference on Object-Oriented Programming (ECOOP 2023). Ed. by Jonathan Aldrich and
Guido Salvaneschi. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024, 32:1–32:20. doi: 10.4230/
LIPIcs.ECOOP.2024.32. url: https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.ECOOP.2024.32.

[Lou21] Daniël Louwrink. A Separation Logic for Stacked Borrows. en. Report. Apr. 2021. url: https:
//eprints.illc.uva.nl/id/eprint/1790/ (visited on 01/03/2023).

[Mak+21] Petar Maksimović, Sacha-Élie Ayoun, José Fragoso Santos, and Philippa Gardner. “Gillian, Part
II: Real-World Verification for JavaScript and C”. en. In: Computer Aided Verification. Ed. by
Alexandra Silva and K. Rustan M. Leino. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2021, pp. 827–850. isbn: 978-3-030-81688-9. doi: 10.1007/978-3-
030-81688-9_38.

[Mak+23] Petar Maksimović, Caroline Cronjäger, Andreas Lööw, Julian Sutherland, and Philippa Gardner.
“Exact Separation Logic: Towards Bridging the Gap Between Verification and Bug-Finding”. en.
In: DROPS-IDN/v2/document/10.4230/LIPIcs.ECOOP.2023.19. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023. doi: 10.4230/LIPIcs.ECOOP.2023.19. url: https://drops.
dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.19 (visited on 03/18/2024).

[Mat+22] Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer. “RustHornBelt:
a semantic foundation for functional verification of Rust programs with unsafe code”. In:
Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. PLDI 2022. New York, NY, USA: Association for Computing
Machinery, June 2022, pp. 841–856. isbn: 978-1-4503-9265-5. doi: 10.1145/3519939.3523704.
url: https://doi.org/10.1145/3519939.3523704 (visited on 01/13/2023).

[Men+19] Adrian D. Mensing, Hendrik van Antwerpen, Casper Bach Poulsen, and Eelco Visser. “From
definitional interpreter to symbolic executor”. In: Proceedings of the 4th ACM SIGPLAN
International Workshop on Meta-Programming Techniques and Reflection. META 2019. New
York, NY, USA: Association for Computing Machinery, Oct. 2019, pp. 11–20. isbn: 978-1-4503-
6985-5. doi: 10.1145/3358502.3361269. url: https://dl.acm.org/doi/10.1145/3358502.
3361269 (visited on 07/09/2023).

[Mil+97] Robin Milner, Robert Harper, David MacQueen, and Mads Tofte. The Definition of Standard ML.
en. The MIT Press, May 1997. isbn: 978-0-262-28700-5. doi: 10.7551/mitpress/2319.001.0001.
url: https://direct.mit.edu/books/book/2094/The-Definition-of-Standard-ML (visited
on 03/09/2024).

https://doi.org/10.1145/1538788.1538814
https://dl.acm.org/doi/10.1145/1538788.1538814
https://dl.acm.org/doi/10.1145/1538788.1538814
https://compcert.org/compcert-C.html
https://compcert.org/compcert-C.html
https://doi.org/10.4230/LIPIcs.ECOOP.2024.12
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.12
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.12
https://doi.org/10.4230/LIPIcs.ECOOP.2024.32
https://doi.org/10.4230/LIPIcs.ECOOP.2024.32
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.32
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.32
https://eprints.illc.uva.nl/id/eprint/1790/
https://eprints.illc.uva.nl/id/eprint/1790/
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.19
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.19
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3358502.3361269
https://dl.acm.org/doi/10.1145/3358502.3361269
https://dl.acm.org/doi/10.1145/3358502.3361269
https://doi.org/10.7551/mitpress/2319.001.0001
https://direct.mit.edu/books/book/2094/The-Definition-of-Standard-ML

BIBLIOGRAPHY 215

[Mil18] Bartosz Milewski. Category Theory for Programmers. Blurb, Incorporated, Sept. 2018. isbn:
978-0-464-82508-1.

[MK14] Nicholas D. Matsakis and Felix S. Klock. “The Rust language”. In: ACM SIGAda Ada Letters
34.3 (Oct. 2014), pp. 103–104. issn: 1094-3641. doi: 10.1145/2692956.2663188. url: https:
//dl.acm.org/doi/10.1145/2692956.2663188 (visited on 05/23/2023).

[MSS16a] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. “Automatic Verification of Iterated
Separating Conjunctions Using Symbolic Execution”. en. In: Computer Aided Verification.
Ed. by Swarat Chaudhuri and Azadeh Farzan. Cham: Springer International Publishing, 2016,
pp. 405–425. isbn: 978-3-319-41528-4. doi: 10.1007/978-3-319-41528-4_22.

[MSS16b] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. “Viper: A Verification Infras-
tructure for Permission-Based Reasoning”. en. In: Verification, Model Checking, and Abstract
Interpretation. Ed. by Barbara Jobstmann and K. Rustan M. Leino. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2016, pp. 41–62. isbn: 978-3-662-49122-5. doi:
10.1007/978-3-662-49122-5_2.

[MTK21] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. “RustHorn: CHC-based Verification
for Rust Programs”. In: ACM Transactions on Programming Languages and Systems 43.4 (Oct.
2021), 15:1–15:54. issn: 0164-0925. doi: 10.1145/3462205. url: https://doi.org/10.1145/
3462205 (visited on 01/05/2023).

[Mul+14] Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and Peter Sewell. “Lem:
reusable engineering of real-world semantics”. In: ACM SIGPLAN Notices 49.9 (Aug. 2014),
pp. 175–188. issn: 0362-1340. doi: 10.1145/2692915.2628143. url: https://dl.acm.org/
doi/10.1145/2692915.2628143 (visited on 05/01/2024).

[Nau18] Daiva Naudziuniene. “An Infrastructure for Tractable Verification of JavaScript Programs”.
PhD thesis. Imperial College London, 2018.

[Nel+19] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and Xi Wang.
“Scaling symbolic evaluation for automated verification of systems code with Serval”. In: Proceed-
ings of the 27th ACM Symposium on Operating Systems Principles. SOSP ’19. New York, NY,
USA: Association for Computing Machinery, Oct. 2019, pp. 225–242. isbn: 978-1-4503-6873-5.
doi: 10.1145/3341301.3359641. url: https://dl.acm.org/doi/10.1145/3341301.3359641
(visited on 05/01/2024).

[NKC08] Huu Hai Nguyen, Viktor Kuncak, and Wei-Ngan Chin. “Runtime Checking for Separation Logic”.
en. In: Verification, Model Checking, and Abstract Interpretation. Ed. by Francesco Logozzo,
Doron A. Peled, and Lenore D. Zuck. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2008, pp. 203–217. isbn: 978-3-540-78163-9. doi: 10.1007/978-3-540-78163-9_19.

[NLR22] Olivier Nicole, Matthieu Lemerre, and Xavier Rival. “Lightweight Shape Analysis Based on Phys-
ical Types”. en. In: Verification, Model Checking, and Abstract Interpretation. Ed. by Bernd
Finkbeiner and Thomas Wies. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2022, pp. 219–241. isbn: 978-3-030-94583-1. doi: 10.1007/978-3-030-94583-1_11.

[NS07] Nicholas Nethercote and Julian Seward. “Valgrind: a framework for heavyweight dynamic binary
instrumentation”. In: Proceedings of the 28th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI ’07. New York, NY, USA: Association for Computing
Machinery, June 2007, pp. 89–100. isbn: 978-1-59593-633-2. doi: 10.1145/1250734.1250746.
url: https://dl.acm.org/doi/10.1145/1250734.1250746 (visited on 05/13/2024).

[OHe19] Peter W. O’Hearn. “Incorrectness logic”. In: Proceedings of the ACM on Programming Languages
4.POPL (Dec. 2019), 10:1–10:32. doi: 10.1145/3371078. url: https://doi.org/10.1145/
3371078 (visited on 01/05/2023).

https://doi.org/10.1145/2692956.2663188
https://dl.acm.org/doi/10.1145/2692956.2663188
https://dl.acm.org/doi/10.1145/2692956.2663188
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
https://doi.org/10.1145/2692915.2628143
https://dl.acm.org/doi/10.1145/2692915.2628143
https://dl.acm.org/doi/10.1145/2692915.2628143
https://doi.org/10.1145/3341301.3359641
https://dl.acm.org/doi/10.1145/3341301.3359641
https://doi.org/10.1007/978-3-540-78163-9_19
https://doi.org/10.1007/978-3-030-94583-1_11
https://doi.org/10.1145/1250734.1250746
https://dl.acm.org/doi/10.1145/1250734.1250746
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078

216 gillian

[OP99] Peter W. O’Hearn and David J. Pym. “The Logic of Bunched Implications”. In: The Bulletin of
Symbolic Logic 5.2 (1999). Publisher: [Association for Symbolic Logic, Cambridge University
Press], pp. 215–244. issn: 1079-8986. doi: 10.2307/421090. url: https://www.jstor.org/
stable/421090 (visited on 04/21/2024).

[Ope20] Open JDK Team. JDK Bug 8241805: add Math.absExact. Mar. 2020. url: https://bugs.
openjdk.org/browse/JDK-8241805 (visited on 01/30/2024).

[Pan24] Srđan Panić. srdja/Collections-C. original-date: 2014-08-17T14:12:26Z. May 2024. url: https:
//github.com/srdja/Collections-C (visited on 05/05/2024).

[PB05] Matthew Parkinson and Gavin Bierman. “Separation logic and abstraction”. en. In: ACM
SIGPLAN Notices 40.1 (Jan. 2005), pp. 247–258. issn: 0362-1340, 1558-1160. doi: 10.1145/
1047659.1040326. url: https://dl.acm.org/doi/10.1145/1047659.1040326 (visited on
07/24/2023).

[PJP15] Willem Penninckx, Bart Jacobs, and Frank Piessens. “Sound, Modular and Compositional
Verification of the Input/Output Behavior of Programs”. en. In: Programming Languages and
Systems. Ed. by Jan Vitek. Berlin, Heidelberg: Springer, 2015, pp. 158–182. isbn: 978-3-662-
46669-8. doi: 10.1007/978-3-662-46669-8_7.

[Pul+23] Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and
Neel Krishnaswami. “CN: Verifying Systems C Code with Separation-Logic Refinement Types”.
en. In: Proceedings of the ACM on Programming Languages 7.POPL (Jan. 2023), pp. 1–32.
issn: 2475-1421. doi: 10.1145/3571194. url: https://dl.acm.org/doi/10.1145/3571194
(visited on 08/01/2023).

[Raa+20] Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard.
“Local Reasoning About the Presence of Bugs: Incorrectness Separation Logic”. en. In: Computer
Aided Verification. Ed. by Shuvendu K. Lahiri and Chao Wang. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 225–252. isbn: 978-3-030-53291-8.
doi: 10.1007/978-3-030-53291-8_14.

[RE15] David A. Ramos and Dawson Engler. “Under-Constrained Symbolic Execution: Correctness
Checking for Real Code”. In: 24th USENIX Security Symposium (USENIX Security 15). Washing-
ton, D.C.: USENIX Association, Aug. 2015, pp. 49–64. isbn: 978-1-939133-11-3. url: https://
www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos.

[Rey02] John C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data Structures”. English.
In: ISSN: 1043-6871. IEEE Computer Society, July 2002, pp. 55–55. isbn: 978-0-7695-1483-3.
doi: 10.1109/LICS.2002.1029817. url: https://www.computer.org/csdl/proceedings-
article/lics/2002/14830055/12OmNxYbSXN (visited on 10/26/2023).

[RS, 10] Grigore Ros,u and Traian Florin S, erbănută. “An overview of the K semantic framework”. In:
The Journal of Logic and Algebraic Programming. Membrane computing and programming
79.6 (Aug. 2010), pp. 397–434. issn: 1567-8326. doi: 10.1016/j.jlap.2010.03.012. url:
https://www.sciencedirect.com/science/article/pii/S1567832610000160 (visited on
05/01/2024).

[Sam+21] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer,
and Deepak Garg. “RefinedC: automating the foundational verification of C code with refined
ownership types”. In: Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. PLDI 2021. New York, NY, USA: As-
sociation for Computing Machinery, June 2021, pp. 158–174. isbn: 978-1-4503-8391-2. doi:
10.1145/3453483.3454036. url: https://dl.acm.org/doi/10.1145/3453483.3454036 (visited
on 05/23/2023).

https://doi.org/10.2307/421090
https://www.jstor.org/stable/421090
https://www.jstor.org/stable/421090
https://bugs.openjdk.org/browse/JDK-8241805
https://bugs.openjdk.org/browse/JDK-8241805
https://github.com/srdja/Collections-C
https://github.com/srdja/Collections-C
https://doi.org/10.1145/1047659.1040326
https://doi.org/10.1145/1047659.1040326
https://dl.acm.org/doi/10.1145/1047659.1040326
https://doi.org/10.1007/978-3-662-46669-8_7
https://doi.org/10.1145/3571194
https://dl.acm.org/doi/10.1145/3571194
https://doi.org/10.1007/978-3-030-53291-8_14
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos
https://doi.org/10.1109/LICS.2002.1029817
https://www.computer.org/csdl/proceedings-article/lics/2002/14830055/12OmNxYbSXN
https://www.computer.org/csdl/proceedings-article/lics/2002/14830055/12OmNxYbSXN
https://doi.org/10.1016/j.jlap.2010.03.012
https://www.sciencedirect.com/science/article/pii/S1567832610000160
https://doi.org/10.1145/3453483.3454036
https://dl.acm.org/doi/10.1145/3453483.3454036

BIBLIOGRAPHY 217

[Sam23] Michael Joachim Sammler. “Automated and foundational verification of low-level programs”.
en. Accepted: 2024-01-05T10:33:27Z. doctoralThesis. Saarländische Universitäts- und Lan-
desbibliothek, 2023. doi: 10.22028/D291-41316. url: https://publikationen.sulb.uni-
saarland.de/handle/20.500.11880/37089 (visited on 06/04/2024).

[San+18] José Fragoso Santos, Petar Maksimović, Théotime Grohens, Julian Dolby, and Philippa Gardner.
“Symbolic Execution for JavaScript”. In: Proceedings of the 20th International Symposium
on Principles and Practice of Declarative Programming. PPDP ’18. New York, NY, USA:
Association for Computing Machinery, Sept. 2018, pp. 1–14. isbn: 978-1-4503-6441-6. doi:
10.1145/3236950.3236956. url: https://dl.acm.org/doi/10.1145/3236950.3236956 (visited
on 01/29/2024).

[Sch16] Malte H. Schwerhoff. “Advancing Automated, Permission-Based Program Verification Using
Symbolic Execution”. en. Accepted: 2017-10-13T14:23:40Z. Doctoral Thesis. ETH Zurich, 2016.
doi: 10.3929/ethz-a-010835519. url: https://www.research-collection.ethz.ch/handle/
20.500.11850/127711 (visited on 09/09/2023).

[Sew+07] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strniša. “Ott: effective tool support for the working semanticist”. In: ACM
SIGPLAN Notices 42.9 (Oct. 2007), pp. 1–12. issn: 0362-1340. doi: 10.1145/1291220.1291155.
url: https://dl.acm.org/doi/10.1145/1291220.1291155 (visited on 05/01/2024).

[SJP10] Jan Smans, Bart Jacobs, and Frank Piessens. “Heap-Dependent Expressions in Separation Logic”.
en. In: Formal Techniques for Distributed Systems. Ed. by John Hatcliff and Elena Zucca. Berlin,
Heidelberg: Springer, 2010, pp. 170–185. isbn: 978-3-642-13464-7. doi: 10.1007/978-3-642-
13464-7_14.

[SJP12] Jan Smans, Bart Jacobs, and Frank Piessens. “Implicit dynamic frames”. In: ACM Transactions
on Programming Languages and Systems 34.1 (May 2012), 2:1–2:58. issn: 0164-0925. doi:
10.1145/2160910.2160911. url: https://dl.acm.org/doi/10.1145/2160910.2160911 (visited
on 08/31/2023).

[TB13] Emina Torlak and Rastislav Bodik. “Growing solver-aided languages with rosette”. In: Proceedings
of the 2013 ACM international symposium on New ideas, new paradigms, and reflections on
programming & software. Onward! 2013. New York, NY, USA: Association for Computing
Machinery, Oct. 2013, pp. 135–152. isbn: 978-1-4503-2472-4. doi: 10.1145/2509578.2509586.
url: https://dl.acm.org/doi/10.1145/2509578.2509586 (visited on 05/01/2024).

[TB14] Emina Torlak and Rastislav Bodik. “A lightweight symbolic virtual machine for solver-aided host
languages”. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’14. New York, NY, USA: Association for Computing
Machinery, June 2014, pp. 530–541. isbn: 978-1-4503-2784-8. doi: 10.1145/2594291.2594340.
url: https://dl.acm.org/doi/10.1145/2594291.2594340 (visited on 05/01/2024).

[Tea23] The Kani Team. How Open Source Projects are Using Kani to Write Better Software in Rust |
AWS Open Source Blog. en-US. Section: Best Practices. Nov. 2023. url: https://aws.amazon.
com/blogs/opensource/how-open-source-projects-are-using-kani-to-write-better-

software-in-rust/ (visited on 11/13/2023).

[The23a] The Coq Team. The Coq Proof Assistant. Accessed: Nov. 16th 2023. 2023. url: https :

//coq.inria.fr/ (visited on 11/17/2023).

[The23b] The OCaml Team. The OCaml Manual - Ch. 12.23: Binding Operators. https://v2.ocaml.
org/manual/bindingops.html. Accessed: December 4th 2023. 2023.

[The24] The Racket Team. The Racket programming language. 2024. url: https://racket-lang.org/
(visited on 05/01/2024).

https://doi.org/10.22028/D291-41316
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/37089
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/37089
https://doi.org/10.1145/3236950.3236956
https://dl.acm.org/doi/10.1145/3236950.3236956
https://doi.org/10.3929/ethz-a-010835519
https://www.research-collection.ethz.ch/handle/20.500.11850/127711
https://www.research-collection.ethz.ch/handle/20.500.11850/127711
https://doi.org/10.1145/1291220.1291155
https://dl.acm.org/doi/10.1145/1291220.1291155
https://doi.org/10.1007/978-3-642-13464-7_14
https://doi.org/10.1007/978-3-642-13464-7_14
https://doi.org/10.1145/2160910.2160911
https://dl.acm.org/doi/10.1145/2160910.2160911
https://doi.org/10.1145/2509578.2509586
https://dl.acm.org/doi/10.1145/2509578.2509586
https://doi.org/10.1145/2594291.2594340
https://dl.acm.org/doi/10.1145/2594291.2594340
https://aws.amazon.com/blogs/opensource/how-open-source-projects-are-using-kani-to-write-better-software-in-rust/
https://aws.amazon.com/blogs/opensource/how-open-source-projects-are-using-kani-to-write-better-software-in-rust/
https://aws.amazon.com/blogs/opensource/how-open-source-projects-are-using-kani-to-write-better-software-in-rust/
https://coq.inria.fr/
https://coq.inria.fr/
https://v2.ocaml.org/manual/bindingops.html
https://v2.ocaml.org/manual/bindingops.html
https://racket-lang.org/

218 gillian

[TIR21] David Trabish, Shachar Itzhaky, and Noam Rinetzky. “Address-Aware Query Caching for
Symbolic Execution”. In: 2021 14th IEEE Conference on Software Testing, Verification and
Validation (ICST). ISSN: 2159-4848. Apr. 2021, pp. 116–126. doi: 10.1109/ICST49551.2021.
00023. url: https://ieeexplore.ieee.org/document/9438562 (visited on 02/12/2024).

[Wat18] Conrad Watt. “Mechanising and verifying the WebAssembly specification”. In: Proceedings of
the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs. CPP
2018. New York, NY, USA: Association for Computing Machinery, Jan. 2018, pp. 53–65. isbn:
978-1-4503-5586-5. doi: 10.1145/3167082. url: https://dl.acm.org/doi/10.1145/3167082
(visited on 11/30/2023).

[Wol+21] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, João C. Pereira, and Peter
Müller. “Gobra: Modular Specification and Verification of Go Programs”. en. In: Computer Aided
Verification. Ed. by Alexandra Silva and K. Rustan M. Leino. Cham: Springer International
Publishing, 2021, pp. 367–379. isbn: 978-3-030-81685-8. doi: 10.1007/978-3-030-81685-8_17.

[YO02] Hongseok Yang and Peter O’Hearn. “A Semantic Basis for Local Reasoning”. en. In: Foundations
of Software Science and Computation Structures. Ed. by Mogens Nielsen and Uffe Engberg.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2002, pp. 402–416. isbn:
978-3-540-45931-6. doi: 10.1007/3-540-45931-6_28.

[ZDA24] Conrad Zimmerman, Jenna DiVincenzo, and Jonathan Aldrich. “Sound Gradual Verification
with Symbolic Execution”. In: Proceedings of the ACM on Programming Languages 8.POPL
(Jan. 2024), 85:2547–85:2576. doi: 10.1145/3632927. url: https://dl.acm.org/doi/10.1145/
3632927 (visited on 04/30/2024).

https://doi.org/10.1109/ICST49551.2021.00023
https://doi.org/10.1109/ICST49551.2021.00023
https://ieeexplore.ieee.org/document/9438562
https://doi.org/10.1145/3167082
https://dl.acm.org/doi/10.1145/3167082
https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.1007/3-540-45931-6_28
https://doi.org/10.1145/3632927
https://dl.acm.org/doi/10.1145/3632927
https://dl.acm.org/doi/10.1145/3632927

Appendix

Appendix A

Compositionality and parametricity

Lemma 4.3 (PCMs: Induced preorder).
A PCM (A, 0A, •) induces a preorder ⪯ on A as follows:

a ⪯ b ⇐⇒ ∃c. b = a • c

Proof. A preorder is a reflexive and transitive relation.
To prove Reflexivity: ⪯ is reflexive because σ = 0 • σ for any σ, and
therefore σ ⪯ σ.
To prove Transitivity: If σ1 ⪯ σ2 and σ2 ⪯ σ3, then ∃σa. σ2 = σ1 • σa

and ∃σb. σ3 = σ2 • σb, and therefore σ3 = (σ1 • σa) • σb = σ1 • (σa • σb),
by associativity. Hence σ1 ⪯ σ3.

Theorem 4.6 (Preservation of compositionality).

S c∼
m

S =⇒ SS
c∼
m
SS

Proof. This is trivially proven by induction on the structure of the
SIGIL syntax tree.
The only language constructs for which the interpretation may differ
between the full and the compositional semantics is that of action call,
and since S c∼

m
S, eval must also be m-sound wrt. eval.

Appendix B

Parametric Assertion Language

B.1 Correctness of the parametric producer

Theorem 5.6 (Correctness of assertion production).
Let Σ be a set of state fragments, ∆ an associated set of core predicates,
S.produce be the producer for ∆, and P be an assertion that only
contains core predicates from ∆. Then:

produce_asrt S θ σ P = {σ • σP | θ, σP |= P, σ # σP }

Proof. By induction on the structure of assertions. The base case is
proven by directly applying the definition of the core predicate producer.
The existential quantification case is proven by observing that

σ′ ∈
⋃︁

v∈Val

{σ • σP | θ [x← v] , σP |= P, σ # σP }

⇐⇒ ∃v ∈ Val . θ [x← v] , σ′ |= P ∧ ∃σP . σ′ = σ • σP

⇐⇒ θ, σ′ |= ∃x. P ∧ ∃σP . σ′ = σ • σP

⇐⇒ σ′ ∈ {σ • σP | θ, σP |= ∃x. P, σ # σP }

Finally, the separating conjunction case is proven using the following
equality:

⋃︁
{{σ′ • σQ | θ, σQ |= Q, σ′ # σQ} | σ′ = σ • σP ∧ θ, σP |= P, σ # σP }

= {(σ • σP) • σQ | θ, σP |= P ∧ θ, σQ |= Q, σ # σP # σQ}
= {σ • (σP • σQ) | θ, σP |= P ∧ θ, σQ |= Q, σ # σP # σQ}
= {σ • σ′′ | θ, σ′′ |= P ∗Q, σ # σ′′}

B.2 Correctness of the parametric consumer

We start by providing the definition of the parametric consumer in the
form of inference rules below. Only the success cases are required for
our proofs.

224 gillian

Consume-Asrt
plan θ P = Ok : mp

consume_mp consume (θ, σ) mp = Ok : (θ′, σ′)

consume_asrt consume σ θ P = Ok : (θ′, σ′)

Consume-empty-mp

consume_mp consume (θ, σ) [] = Ok : (θ, σ)

Consume-mp-fold
consume_step consume (θ′, σ′) step = Ok : (θ′, σ′)

consume_mp consume (θ′, σ′) rest = Ok : (θ′′, σ′′)

consume_mp consume (σ, θ) (step : rest) = Ok : (θ′′, σ′′)

Consume-step
step = (⟨δ⟩(e⃗i; e⃗o), learnings)

Je⃗iKθ = Ok : v⃗i consume σ δ v⃗i = Ok : (v⃗o, σ
′)

θo = [O⃗ ↦→ v⃗o] learn_all θo θ learnings = Ok : θ′

Je⃗oKθ′ = Ok : v⃗′o v⃗o = v⃗′o

consume_step consume (θ, σ) step = Ok : (θ′, σ′)

Learn-all-empty

learn_all θo θ [] = Ok : θ

Learn-all-fold
x /∈ θ JeKθ∪θo = Ok : v

θ′ = θ [x← v] learn_all θo θ
′ rest = Ok : θ′′

learn_all θo θ ((x, e) : learnings) = Ok : θ′′

Theorem 5.9 (Assertion consumer).
Let S.consume be a valid core predicate consumer according to Defini-
tion 5.7. Then, consume_asrt S satisfies the following properties:

σ.consP (θ)
S→ Ok : (θ′, σ′)

=⇒ ∃σP . σ = σ′ • σP ∧ θ′, σP |= P
(Consuming)

σ.consP (θ)
S→ Ok : (θ′, σ′)

=⇒ θ ⊆ θ′
(Matching)

Proof. Assume

(H1) consume σ δ v⃗i = Ok : (v⃗o, σ
′) =⇒

∃σδ. σ = σ′ • σδ ∧ σδ |= ⟨δ⟩(v⃗i; v⃗o)

(H2) consume_asrt consume σ θ P = Ok : (θ′, σ′)

To prove our three main goals, ∃σP .

(G1) σ = σ′ • σP

(G2) θ, σP |= P

(G3) θ ⊆ θ′

From (H2), we know that

(H3) plan θ P = Ok : mp

(H4) consume_mp consume (θ, σ) mp = Ok : (θ′, σ′)

The only property required of the plan function is that, in case of
success (H3), it returns a matching plan that is a permutation of P put
in normal form:

parametric assertion language 225

(H5) mp = [mpk|nk=1] = [(⟨δk⟩(e⃗ki ; e⃗
k
o), ls

k)|nk=1]

(H6) P ⇐⇒ ∃x⃗. �n
k=1⟨δg(k)⟩(e⃗

g(k)
i ; e⃗g(k)o)

(H7) g is a permutation of [1, n]

Let σ0 = σ, θ0 = θ, σ′ = σn, θ′ = θn and (θk+1, σk+1) = consume_step consume (θk, σk) mpk.
We prove by finite induction that, ∀k ∈ [0, n]. ∃σk

c . :

(G4) θk, σk
c |= �k

j=1⟨δj⟩(e⃗
j
i ; e⃗

j
o)

(G5) σ0 = σk • σk
c

(G6) θ0 ⊆ θk

For k = 0, we have σ0
c = 0, and the goals are trivially satisfied.

Assume that the goals hold for k < n, denoted (G4)k, (G5)k and
(G6)k To prove that they hold for k + 1, denoted (G4)k+1, (G5)k+1

and (G6)k+1.
Since consumption is successful, we know that there exists v⃗ki , v⃗

k
o , u⃗

k
o Ran out of place to put more su-

perscripts, using u⃗o instead of v⃗′o
.

such that:

(H8) Je⃗ki Kθk = Ok : v⃗ki

(H9) consume σk δk v⃗ki = Ok : (v⃗ko , σ
k+1)

(H10) learn_all [O⃗ ↦→ v⃗ko] θ
k lsk = Ok : θk+1

(H11) Je⃗oKθk+1 = Ok : u⃗ko

(H12) v⃗ko = u⃗ko

From (H9) and (H1) we have a σδ such that:

(H13) σk = σk+1 • σδ (H14) σδ |= ⟨δk⟩(v⃗ki ; v⃗
k
o)

From (H10), by trivial finite induction on the length of lsk, and from
the fact that learning terminates successfuly we learn (H15) θk ⊆ θk+1

From (H11) and (H12), we get (H16) Je⃗oKθk+1 = Ok : v⃗ko and from
(H15) and (H8) we get (H17) Je⃗ki Kθk+1 = Ok : v⃗ki

By Definition 5.2 of assertion satisfiability, using (H17), (H16) and
(H14) we get (H18) θk+1, σδ |= ⟨δk⟩(v⃗ki ; v⃗

k
o)

We can now connect the outcomes of this consumption step to our
induction hypothesis.

Let σk+1
c = σk

c
• σδ.

From (H13) and (G5)k, we get (G5)k+1.
Then from (H15) and (G6)k we get the intermediate result:

(H19) θk+1, σk |=
k

�
j=1
⟨δj⟩(e⃗ji ; e⃗

j
o)

which in turns, combined with (H18) and Definition 5.2 of assertion
satisfiability gives us the goal (G4)k+1.

Finally, the goal (G6)k+1 is obtained using (G6)k and (H15), con-
cluding our induction, obtaining its three induction goals for k = n.

The goal (G3) is just the last induction goal (G3)n. In addition,
we note that the separation conjunction is commutative, and that
θ, σ |= Q =⇒ θ, σ |= ∃x. Q. Therefore, using (H7), (H6) and our final

226 gillian

induction goals (G4) and (G5)n, we obtain (G2) and (G1) by setting
σP = σn

c .

Theorem 5.10 (Assertion consumer completeness).
Given a complete (according to Definition 5.8) core predicate consumer
S.consume, the assertion consumer consume_asrt S is also complete.1 1 This theorem assumes that the

creation a matching plan cannot
fail if all the free variables of the
assertions are already known, and
that, in this case, the list of learnings
is always empty.

Formally, it satisfies the following property:

θ, σP |= P ∧ σ # σP

=⇒ ∃(σ • σP).consP (θ)
S→ Ok : (θ, σ)

(Consume completeness)

Proof. This theorem assumes that creating a matching plan cannot fail
if the substitution already covers all the free variables of the assertion.
Assume

(H1) θ, σP |= P

(H2) σ # σP

(H3) σδ |= ⟨δ⟩(v⃗i; v⃗o) ∧ σδ # σf =⇒

(σδ • σf).consδ(v⃗i)→ Ok : (v⃗o, σ)

To prove (G1) ∃θ′.(σ • σP).consP (θ)→ Ok : (θ′, σ)

Since θ, σP |= P , we know that fv(P) ⊆ dom(θ), and therefore (H4) plan θ P =

Ok : mp. Since planning is successful, we have the properties of the
matching plan, where we assume that there is no learning to be done:

(H5) mp = [mpk|nk=1] = [(⟨δk⟩(e⃗ki ; e⃗
k
o), [])|nk=1]

(H6) P ⇐⇒ ∃x⃗. �n
k=1⟨δg(k)⟩(e⃗

g(k)
i ; e⃗g(k)o)

(H7) g is a permutation of [1, n]

From all of the above, and the definition of assertion satisfiability, we
can deduce that for all k in [1, n], there is a σδk such that (H8)k

θ, σδk |= ⟨δk⟩(e⃗ki ; e⃗
k
o) and (H9) σδ1 • . . . • σδn = σP .

For each k, (H8)k and the definition of assertion satisfiability indicates
that ∃v⃗ki , v⃗

k
o such that

(H10)k Je⃗ki Kθ = Ok : v⃗ki (H11)k Je⃗koKθ = Ok : v⃗ko

(H12)k σδk |= ⟨δk⟩(v⃗ki ; v⃗
k
o)

Each step can be consumed successfuly since: evaluation cannot fail,
given (H10)k and (H11)k; learning cannot fail, since th learnings are
always empty; consumption is complete, and is therefore guaranteed
to consume σδk at each step, and to return the v⃗ko , which is the same
list of outs as obtained by evaluating the in-expressions, according to
(H11)k, and are therefore guaranteed to pass the final check. At the
end, all the steps are consumed, and the final state is σ. This proves
our goal.

parametric assertion language 227

B.3 Soundness of specification execution

During our proof, we make use of the equivalent following definition of
specification validity. These definitions are equivalent to Definition 5.11,
but are more amenable to our proof strategy.

Lemma B.1 (Specification validity with explicit frame).

γ |= { P } e { Ok : r.QOk }{ Err : r. QErr } ⇐⇒
(∀θ, σ, σ′, σf , o.
θ, σ |= P ∧ γ ⊢ (σ • σf), e ⇓θ o : (v, σ′) =⇒
(o ̸= Miss ∧ ∃σQ. σ′ = σQ • σf ∧ θ [r← v] , σQ |= Qo))

γ |= [P] e [Ok : r.QOk][Err : r. QErr] ⇐⇒
(∀θ, σ′, σf , o, v.
θ [r← v] , σ′ |= Qo ∧ σ′ # σf =⇒
(∃σ. θ, σ |= P ∧ γ ⊢ (σ • σf), e ⇓θ o : (v, σ′ • σf))

We give the definition of the specification execution in inference rule
form

Exec-Spec-Success
S = ⟨⟨ P ⟩⟩ _ ⟨⟨ Ok : r. QOk ⟩⟩⟨⟨ Err : r. QErr ⟩⟩

σ.consP (θ)→ Ok : (θ′, σf)

v ∈ Val σ.prodQo
(θ′ [r← v])⇝ σ′

σf .specS(θ)⇝ o : (v, σ′)

Exec-Spec-Fail
S = ⟨⟨ P ⟩⟩ _ ⟨⟨ Ok : r. QOk ⟩⟩⟨⟨ Err : r. QErr ⟩⟩
σ.consP (θ)→ o : (θ′, σ′) o ∈ {Miss, Lfail}
σ.specS(θ)⇝ o : (CannotConsumePre, σ′)

Theorem 5.13 (Specification execution: soundness).
Let γ be a program and S = { P } e { Ok : r. QOk }{ Err : r. QErr }
be a separation logic quadruple. If S is valid in γ and e can be executed
in γ starting from a state σ under a substitution θ, then execution of
S in the same state σ and substitution yields at least one result. In
the absence of failures, all paths are preserved:

γ |= S ∧ γ ⊢ σ, e ⇓θ o : (v, σ′) =⇒
(∃oS , vS , σS . σ.specS(θ)⇝ oS : (vS , σS)

∧ (oS /∈ {Miss, Lfail} =⇒ (oS = o ∧ vS = v ∧ σS = σ′)))

(OX spec. exec. soundness)
If, conversely, S = [P] e [Ok : r.QOk][Err : r. QErr] is an in-

correctness separation logic quadruple, and then all states that are
successfully reachable using the specification execution are also reach-
able using the expression execution:

γ |= S ∧ σ.specS(θ)⇝ o : (v, σ′) ∧ o /∈ {Miss, Lfail} =⇒
γ ⊢ σ, e ⇓θ o : (v, σ′)

(UX spec. exec. soundness)
Note that the guarantees provided by UX specification execution are
under the assumption that all core predicates used are strictly exact.

Proof. Assume

228 gillian

(H1) γ |= S

(H2) γ ⊢ σ, e ⇓θ o : (v, σ′)

Case OX soundness:
To prove (G1) ∃oS , vS , σS . σ.specS(θ) ⇝ oS : (vS , σS) ∧ (oS /∈
{Miss, Lfail} =⇒ (oS = o ∧ vS = v ∧ σS = σ′)

By executing the consumer we get:

(H3) σ.consP (θ)→ oc : (θ
′, σf)

If oc ∈ {Miss, Lfail}, then Exec-Spec-Fail applies we have our goal
(G1). We consider the other case where (H4) oc = Ok.
From (H3) and (H4), and Theorem 5.9 we have a σP such that:

(H5) θ′, σP |= P (H6) σ = σP • σf (H7) θ ⊆ θ′

From (H2) and (H7), we have

(H8) γ ⊢ σ, e ⇓θ′ o : (v, σ′)

From Lemma B.1, (H5), (H6), (H7), and (H8), we have ∃σQ.

(H9) σ′ = σQ • σf (H10) θ [r← v] , σQ |= Qo

By applying the Theorem 5.6, (H9) and (H10), we have

(H11) σf .prodQo
(θ′ [r← v])⇝ σ′

From (H3), (H4) and (H11), we can apply Exec-Spec-Success to
obtain:

σ.specS(θ)⇝ o : (v, σ′)

The above is our goal (G1).

Case UX soundness:
Assume

(H1) γ |= S

(H2) σ.specS(θ)⇝ o : (v, σ′)

(H3) o /∈ {Miss, Lfail}

(H4) θ, σP |= P ∧ θ, σ′P |= P =⇒ σP = σ′P (strict exactness of the
pre-condition)

To prove (G1) γ ⊢ σ, e ⇓θ o : (v, σ′)
From (H2), (H3) and Exec-Spec-Success, we have ∃σf :

(H5) σ.consP (θ)→ Ok : (θ′, σf) (H6) σf .prodQo
(θ′ [r← v])⇝ σ′

By validity of the producer (Theorem 5.6), we have ∃σQ:

(H7) θ′ [r← v] , σQ |= Qo (H8) σ′ = σQ • σf

From (H8), we get (H9) σf#σQ, and from (H9), (H1) and Lemma B.1,
we have ∃σP :

(H10) θ′, σP |= P (H11) γ ⊢ σP • σf , e ⇓θ′ o : (v, σ′)

parametric assertion language 229

From (H5), and the validity of consumers (Theorem 5.9), we have ∃σ′P :

(H12) σ = σ′P • σf (H13) θ′, σ′P |= P

From (H10), (H13) and (H4) we have (H14) σP = σ′P and therefore,
from (H12), (H13), and (H14) we obtain our goal (G1).

B.4 Soundness of the specification semantics

Theorem 5.16 (Specification semantics: soundness).
If m|= (γ,Γ), then one of the following two properties hold, depending
on the mode of execution m:

OX|= (γ,Γ) ∧ γ ⊢ σ, e ⇓θ o : (v, σ′) =⇒ (∃o′, σ′′, v′.
γ,Γ ⊢ σ, e ⇓θ o : (σ′, v′)
∧ (o′ /∈ {Miss, Lfail} ⇒ (o′ = o ∧ σ′′ = σ′ ∧ v′ = v)))

(Spec Sem. OX soundness)

UX|= (γ,Γ) ∧ γ,Γ ⊢ σ, e ⇓θ o : (v, σ′) ∧ o /∈ {Miss, Lfail}
=⇒ γ ⊢ σ, e ⇓θ o : (v′, σ′)

(Spec Sem. UX soundness)

Proof. The proof is performed by induction on the structure of the
expression executed. We first prove the OX soundness, and then the
UX soundness.

Proposition: OX soundness
Assume that OX|= (γ,Γ). We provide a selection of representative cases:

Case Base case: e = ep:
The evaluation of pure expressions is performed identically in both the
compositional and specification semantics. Therefore, the base case is
trival.

Case Inductive case: e = let x = e1 in e2:
Assume

(IH1)

OX|= (γ,Γ) ∧ γ ⊢ σ, e1 ⇓θ o : (v, σ′) =⇒ (∃o′, σ′′, v′.
γ,Γ ⊢ σ, e1 ⇓θ o : (σ′, v′)
∧ (o′ /∈ {Miss, Lfail} ⇒ (o′ = o ∧ σ′′ = σ′ ∧ v′ = v)))

(IH2)

OX|= (γ,Γ) ∧ γ ⊢ σ, e2 ⇓θ o : (v, σ′) =⇒ (∃o′, σ′′, v′.
γ,Γ ⊢ σ, e2 ⇓θ o : (σ′, v′)
∧ (o′ /∈ {Miss, Lfail} ⇒ (o′ = o ∧ σ′′ = σ′ ∧ v′ = v)))

(H1) γ ⊢ σ, e ⇓θ o : (v, σ′)

There are several cases. If the first evaluation fails with Err, Miss or
Lfail, then the whole evaluation fails with the same outcome, and the
result is trivially obtained from the inductive hypothesis (IH1).
If the first evaluation is successful, then the second evaluation is per-
formed:

230 gillian

(H2) γ ⊢ σ, e ⇓θ Ok : (vx, σ
′′)

(H3) γ ⊢ σ′′ ⇓θ[x←vx]
o : (v, σ′)

From (IH1) and (IH2), we have that: ∃o′, σf , v′

(H4) γ,Γ ⊢ σ, e1 ⇓θ Ok : (vx, σ
′′)

(H5) γ,Γ ⊢ σ′′ ⇓θ[x←vx]
o′ : (v′, σf)

(H6) o′ /∈ {Miss, Lfail} =⇒ o′ = o ∧ σf = σ′ ∧ v′ = v

If o′ ∈ {Miss, Lfail}, then the above is our goal. Otherwise, assume

(H7) o′ /∈ {Miss, Lfail}

From the inductive hypothesis (IH2), (H6) and (H7) we obtain our
goal.

Case Inductive case: e = f(e⃗):
First, it can be proven by induction on the size of e⃗ that evaluating
all of the arguments preserve the soundness. The argument for the
inductive case is the same as for the sequential composition case.
Then, for the function call itself, there are two arguments to consider.
If the function does not have a specification in Γ, then the evaluation
is the same in both semantics. Otherwise, the evaluation is performed
by executing the specification, for which we have the soundness from
Theorem 5.13.

Proposition: UX soundness
The soundness of the UX semantics is also proven by induction on the
structure of the expression, and the proof works like the OX case, so
we omit it here.

Appendix C

Symbolic Execution

C.1 Monad laws for the symbolic execution monad

We show that the our symbolic execution monad indeed satisfies the
mnonad laws. We first exhaustively define each of its components,
which we did not do explicitly in the main text to avoid cluttering the
exposition with category theory.

First, it is to be noted that the endofunctor considered is not strictly
the one that associates abstractions to sets of symbolic branches, but
rather the one that associates abstractions to sets of feasible symbolic
branches under an approximate solver SATm.

Definition C.1 (Symex monad).
Given an approximate solver SATm for a mode m ∈ {OX, UX, EX}, we
define the symbolic execution monad as the triple (M, return, bind)

where:

M = A
∗ → P(⟨A∗ | ΠSATm⟩)

return a∗ = {⟨a∗ | true⟩}
bind r f =

{︂
⟨b∗ | π ∧ π′⟩ | ⟨a∗ | π⟩ ∈ r ∧ ⟨b∗ | π′⟩ ∈ f(a∗) ∧ SATm(π ∧ π′)

}︂
and ΠSATm

is the set of feasible branch according to the solver SATm.

Lemma C.2 (Symbolic execution monad: Monad Laws).
The symbolic execution induced by the bind operator defined in Defini-
tion C.1 satisfies the monad laws.

Proof. Proposition: Left identity

The first property that must be proven is that the monad unit is a left
identity for the bind operator, that is, for all symbolic abstraction a∗

and symbolic process f :

(G1) bind (return a∗) f = f(a∗)

We have:

bind (return a∗) f

=
{︂
⟨b∗ | π ∧ π′⟩ | ⟨x∗ | π⟩ ∈ return a∗ ∧ ⟨b∗ | π′⟩ ∈ f(x∗) ∧ SATm(π ∧ π′)

}︂
=

{︂
⟨b∗ | true ∧ π′⟩ | ⟨b∗ | π′⟩ ∈ f(a∗) ∧ SATm(π ∧ π′)

}︂
=

{︂
⟨b∗ | π′⟩ | ⟨b∗ | π′⟩ ∈ f(a∗) ∧ SATm(π′)

}︂
= f(a∗)

The last line holds because all outcomes of f must be feasible according
to the solver SATm.

Proposition: Right identity

232 gillian

The second law is right-identity:

(G2) bind r return = r

We have:

bind r return

=
{︂
⟨b∗ | π ∧ π′⟩ | ⟨x∗ | π⟩ ∈ r ∧ ⟨b∗ | π′⟩ ∈ return(x∗) ∧ SATm(π ∧ π′)

}︂
= {⟨x∗ | π ∧ true⟩ | ⟨x∗ | π⟩ ∈ r ∧ SATm(π ∧ true)}
= {⟨x∗ | π⟩ | ⟨x∗ | π⟩ ∈ r ∧ SATm(π)}
= r

The last line holds because all outcomes of r must be feasible according
to the solver SATm.

Proposition: Associativity
The third law is associativity of the composition of symbolic processes:

(G3) bind (bind r f) g = bind r (λa∗. bind (f(a∗)) g)

We have:

bind r (λa∗. bind (f a∗) g)

=
{︁
⟨c∗ | π ∧ π′⟩ | ⟨a∗ | π⟩ ∈ r∗ ∧ ⟨c∗ | π′⟩ ∈ bind (f a∗) g ∧ SATm(π ∧ π′)

}︁
=

{︂
⟨c∗ | π ∧ π′ ∧ π′′⟩ | ⟨a∗ | π⟩ ∧ ⟨c∗ | π′′⟩ ∈ g b∗ ∧ ⟨b∗ | π′⟩ ∈ f a∗ ∧ SATm(π′ ∧ π′′) ∧ SATm(π ∧ (π′′ ∧ π′))

}︂
=

{︂
⟨c∗ | π ∧ π′ ∧ π′′⟩ | ⟨a∗ | π⟩ ∧ ⟨c∗ | π′′⟩ ∈ g b∗ ∧ ⟨b∗ | π′⟩ ∈ f a∗ ∧ SATm(π ∧ π′) ∧ SATm((π ∧ π′) ∧ π′′)

}︂
= {⟨c∗ | π′′ ∧ π′′′⟩ | ⟨c∗ | π′′⟩ ∈ g b∗∧

⟨b∗ | π′⟩ ∈
{︂
⟨b∗ | π ∧ π′⟩ | ⟨a∗ | π⟩ ∈ r ∧ ⟨b∗ | π′⟩ ∈ f a∗ ∧ SATm(π ∧ π′)

}︂
∧SATm(π′′ ∧ π′′′)}

=
{︂
⟨c∗ | π′′ ∧ π′′′⟩ | ⟨c∗ | π′′⟩ ∈ g b∗ ∧ ⟨b∗ | π′⟩ ∈ bind r (f a∗) ∧ SATm(π′′ ∧ π′′′)

}︂
= bind (bind r f) g

Lemma C.3 (Symbolic execution monad: Produce preservation).
Product is preserved by the symbolic execution monad.

C.2 Composition of symbolic processes

Theorem 6.16 (Process composition: soundness preservation).

f
s∼
m
f ∧ g s∼

m
g =⇒ f >=> g

s∼
m
f >=> g

Proof. Case OX soundness preservation:

(H1) ∀a, b, a∗ε. f(a)⇝ b ∧ ε, a |= a∗

=⇒ ∃b∗, π, ε′ ≥ ε. f(a∗)⇝ ⟨b∗ | π⟩ ∧ ε′, b |= ⟨b∗ | π⟩

(H2) ∀b, c, b∗, ε′. g(b)⇝ c ∧ ε′, b |= b
∗

=⇒ ∃c∗, π′, ε′′ ≥ ε′. g(b∗)⇝ ⟨c∗ | π⟩ ∧ ε′′, c |= ⟨c∗ | π′⟩

symbolic execution 233

(H3)

f(a)⇝ b

g(b)⇝ c

h(a)⇝ c
(H4)

f(a∗)⇝ ⟨b∗ | π⟩
g(b
∗
)⇝ ⟨c∗ | π′⟩

SATOX(π ∧ π′)
h(a∗)⇝ ⟨c∗ | π ∧ π′⟩

Let a ∈ A, c ∈ C, ε ∈ I such that

(H5) h(a)⇝ c (H6) ε, a |= a∗

To prove (G1) ∃c∗, π′′, ε′′ ≥ ε. h(a∗)⇝ ⟨c∗ | π′′⟩ ∧ ε′′, c |= ⟨c∗ | π′′⟩
From (H3) and (H5) we get that ∃b.

(H7) f(a)⇝ b (H8) g(b)⇝ c

From (H4) we have

(H9) ∀b∗.⟨b∗ | π⟩ ∈ f(a∗) =⇒ g(b
∗
)→ −

From (H1), (H6) and (H7), ∃b∗, π, ε′.

(H10) ε′ ≥ ε (H11) f(a∗)⇝ ⟨b∗ | π⟩ (H12) ε, b |= ⟨b∗ | π⟩

Then from (H2), (H8), (H12) and (H9), ∃c∗, π′, ε′′.

(H13) ε′′ ≥ ε′ (H14) g(b
∗
)⇝ ⟨c∗ | π′⟩

(H15) ε, c |= ⟨c∗ | π′⟩

Moreover, from (H10), (H13), (H12) and (H15), we have that π(ε′′) =
true and π′(ε′′) = true, and therefore:

(H16) (π ∧ π′)(ε′′) def
= π(ε′′) ∧ π′(ε′′) = true

Additionally, from (H16) and Definition 6.10 we get

(H17) SATOX(π ∧ π′)

From (H4), (H11), (H14) and (H17) we obtain

(H18) h(a∗)⇝ ⟨c∗ | π ∧ π′⟩

Finally, from (H15), (H16) and (H18) we obtain (G1)

Case UX soundness preservation:

(H1) ∀a∗, b∗, π. f(a∗)⇝ ⟨b∗ | π⟩ =⇒ (SAT(π) ∧

∀ε. π(ε) = true⇒ (∃b. ε, b |= b
∗∧

∀b. ε, b |= b
∗ ⇒ (∃a. ε, a |= a∗ ∧ f(a)⇝ b)))

(H2) ∀b∗, c∗, π. g(b∗)⇝ ⟨c∗ | π⟩ =⇒ (SAT(π) ∧

∀ε. π(ε) = true⇒ (∃c. ε, c |= c∗∧

∀c. ε, c |= c∗ ⇒ (∃b. ε, b |= b
∗ ∧ g(b)⇝ c)))

(H3)

f(a)⇝ b

g(b)⇝ c

h(a)⇝ c
(H4)

f(a∗)⇝ ⟨b∗ | π⟩
g(b
∗
)⇝ ⟨c∗ | π′⟩

SATUX(π ∧ π′)
h(a∗)⇝ ⟨c∗ | π ∧ π′⟩

234 gillian

Let a∗, c∗, π′′ such that

(H5) h(a∗)⇝ ⟨c∗ | π′′⟩

To prove

(G1) ∀ε. π(ε) = true⇒ (∃c. ε, c |= c∗∧

∀c. ε, c |= c∗ ⇒ (∃a. ε, a |= a∗ ∧ h(a)⇝ b))

(G2) SAT(π′′)

Before focusing on either goal, we start by establishing a few facts we
can learn from (H4) and (H5): ∃b∗, π, π′

(H6) f(a∗)⇝ ⟨b∗ | π⟩ (H7) g(b
∗
)⇝ ⟨c∗ | π′⟩

(H8) π′′ = π ∧ π′ (H9) SATUX(π ∧ π′)

From (H9) and the definition of approximate UX solvers, we have

(H10) SAT(π′) (H11) SAT(π)

(H8) and (H9) immediately gives (G2). Let us focus on proving (G1).
Let ε such that (H12) π(ε′′) = true. Our new goals are:

(G3) ∃c. ε, c |= c∗

(G4) ∀c. ε, c |= c∗ ⇒ (∃a. ε, a |= a∗ ∧ h(a)⇝ b)

Goal (G3) is immediate frm (H2), (H10) and (H7), so we focus on
(G4).
Let c such that (H13) ε, c |= c∗.
From (H2), (H10) and (H13), we have ∃b.

(H14) ε, b |= b
∗

(H15) g(b)⇝ c

From (H1), (H6), (H11) and (H14) we also have ∃a.

(H16) ε, a |= a∗ (H17) f(a)⇝ b

Together, (H15) and (H17) entail (H18) h(a) ⇝ c, which, together
with (H16) forms (G4).

Theorem 6.18 (Conditional branching: soundness preservation).
Let f, g : A → P(C) and be non-deterministic processes and h be
defined as:
let h (b, a) = if b then f a else g a

Furthermore, let A
∗

and C
∗

be sets of symbolic abstractions for A
and C. Let f, g : A

∗ → P(⟨C∗ | Π⟩) be m-sound symbolic processes
with respect to f and g. Finally, let h be the symbolic process defined
as:
let h (π, a∗) = branch π (f a∗) (g a∗)

Then, if the branch operator makes use of an m-approximate solver,
then h

∗
is an m-sound symbolic process with respect to h.

Proof. Case OX soundness preservation:

symbolic execution 235

(H1) ∀a, c, a∗, ε. f(a)⇝ c ∧ ε, a |= a∗

=⇒ ∃c∗, π′, ε′ ≥ ε. f(a∗)⇝ ⟨c∗ | π′⟩ ∧ ε′, c |= ⟨c∗ | π′⟩

(H2) ∀a, c, a∗, ε. g(a)⇝ c ∧ ε, a |= a∗

=⇒ ∃c∗, π′, ε′ ≥ ε. g(a∗)⇝ ⟨c∗ | π′⟩ ∧ ε′, c |= ⟨c∗ | π′⟩

(H3)
f(a)⇝ c

h(true, a)⇝ c

g(a)⇝ c

h(false, a)⇝ c

(H4)

f(a∗)⇝ ⟨c∗ | π′⟩
SATOX(π ∧ π′)

h(π, a∗)⇝ ⟨c∗ | π ∧ π′⟩

g(a∗)⇝ ⟨c∗ | π′⟩
SATOX(¬π ∧ π′)

h(π, a∗)⇝ ⟨c∗ | ¬π ∧ π′⟩

Let a, b, c, a∗, ε such that:

(H5) h(b, a)⇝ c (H6) ε, a |= a∗ (H7) π(ε) = b

To prove (G1) ∃c∗, πf , ε′ ≥ ε. h(π, a∗)⇝ ⟨c∗ | πf ⟩ ∧ ε, c |= ⟨c∗ | πf ⟩
There are two cases to consider: either b is true or it is false. We
only consider the true case, the false one being analogous.
Assume (H8) b = true

From (H3), (H5) and (H8), we have that necessarily:

(H9) f(a)⇝ c

Using (H8), (H6) and (H7) we can apply (H1) and obtain ∃π′, c∗, ε′

(H10) ε′ ≥ ε (H11) f(a∗)⇝ ⟨c∗ | π′⟩ (H12) ε′, c |= ⟨c∗ | π′⟩

From (H12) and Definition 6.11, we know that π′(ε′) = true, which
combined with (H10), (H7) and (H8) gives us (H13) (π ∧ π′)(ε′) =
true, which naturally implies SAT(π ∧ π′), and therefore according to
Definition 6.10 (H14) SATOX(π ∧ π′).
Additionally, from (H12), (H13) and the definition of branch satisfia-
bility, we also have that (H15) ε′, c |= ⟨c∗ | π ∧ π′⟩
From (H14)and (H11) we can apply (H4) and obtain (H16) h(π, a∗)⇝
⟨c∗ | π ∧ π′⟩
Together, (H15) and (H16) form our goal (G1).

Case UX soundness preservation:

(H1) ∀a∗, c∗, π. f(a∗)⇝ ⟨c∗ | π⟩ =⇒ (SAT(π) ∧

∀ε. π(ε) = true⇒ (∃c. ε, c |= c∗∧

∀c. ε, c |= c∗ ⇒ (∃a. ε, a |= a∗ ∧ f(a)⇝ c)))

(H2) ∀a∗, c∗, π. g(a∗)⇝ ⟨c∗ | π⟩ =⇒ (SAT(π) ∧

∀ε. π(ε) = true⇒ (∃c. ε, c |= c∗∧

∀c. ε, c |= c∗ ⇒ (∃a. ε, a |= a∗ ∧ g(a)⇝ c)))

(H3)
f(a)⇝ c

h(true, a)⇝ c

g(a)⇝ (c)

h(false, a)⇝ c

236 gillian

(H4)

f(a∗)⇝ ⟨c∗ | π′⟩
SATUX(π ∧ π′)

h(π, a∗)⇝ ⟨c∗ | π ∧ π′⟩

g(a∗)⇝ ⟨c∗ | π′⟩
SATUX(¬π ∧ π′)

h(π, a∗)⇝ ⟨c∗ | ¬π ∧ π′⟩

Let a∗, π, c∗, πf such that

(H5) h(π, a∗)⇝ ⟨c∗ | πf ⟩

To prove

(G1) SAT(πf)

(G2) ∀ε. πf (ε) = true⇒ (∃c. ε, c |= c∗∧
∀c. ε, c |= c∗ ⇒ (∃a, b. ε, a |= a∗ ∧ π(ε) = b ∧ h(b, a)⇝ c)))

From (H5), and by inversions on the rules given in (H4), there are two
ways the result could have been obtained. We consider the case where
the “then” branch was taken, the other being analogous.

Case then branch taken:

(H6) f(a∗)⇝ ⟨c∗ | π′⟩ (H7) SATUX(π ∧ π′)

The goal (G1) is immediately achieved by (H7) and the definition of
approximate UX solvers. In addition, we also get:

(H8) SAT(π′) (H9) SAT(π)

We now focus on (G2). Let ε such that (H10) πf (ε) = true. This
implies that

(H11) π(ε) = true (H12) π′(ε) = true

From (H1), (H6) and (H12), we have ∃c.

(H13) ε, c |= c∗

We take such a c. From (H1), (H6), (H12) and (H13), we also have
∃a.

(H14) ε, a |= a∗ (H15) f(a)⇝ c

from (H15) and (H11), we get that

(H16) h(b, a)⇝ c

which concludes the proof of (G2).

Case else branch taken: Analogous to the previous case.

Theorem 6.20 (Semantics: soundness preservation).
If the symbolic state model S is m-sound with respect to the concrete
compositional state model S, then the induced symbolic semantics SS,
using an m-approximate solver, is m-sound with respect to the concrete
induced semantics SS:

S s∼
m

S =⇒ SS
s∼
m
SS

Proof. The proof comes naturally from putting the symbolic and the
concrete eval function next to each other, and applying Theorems 6.16
and 6.18 and whenever processes are composed sequentially or through
conditional branching.

Appendix D

Analyses

D.1 Compositional verification

Theorem 7.1 (Compositional verification: soundness).
Let d = f(x⃗) {e} be a function definition, s = { P } f(x⃗) { o : r. Q }
be an OX function specification for f , and I|= (γ,Γ) be an OX-valid
environment, where f /∈ dom(γ). Let γ′ = γ [f ← d] and Γ′ = Γ [f ← s].
If verify Γ′ γ′ f s = true, then I|= (γ′,Γ′)

Proof. We first prove the soundness of a concrete version of the verifi-
cation procedure. This concrete version is then lifted to the symbolic
world, where it satisfies the symbolic soundness property. Putting
the two results together, we obtain the soundness of the symbolic
verification procedure.

Proposition: Concrete soundness We define the concrete verifica-
tion procedure as follows:
let exec_verify Γ γ f =

let f(x⃗) {e} = γ(f) in

let { P } f(x⃗) { Ok : r. QOk }{ Err : r. QErr } = Γ(f) in
let y⃗ = fv(P) in
let* v⃗x, v⃗y = nondet () in
let θ = [x⃗ ↦→ v⃗x, y⃗ ↦→ v⃗y] in
let* σ = produce_asrt θ 0 P in
let* (o : v, σ′) = eval Γ γ θ σ e in
let* θ′ = θ [r← v] in
consume_asrt θ′ σ′ Qo

let verify_concrete Γ γ f =
∀ (ol : _) ∈ exec_verify Γ γ f. ol = Ok

Let d = f(x⃗) {e} and s = { P } f(x⃗) { Ok : r. QOk }{ Err : r. QErr }.
Assume

(H1) I|= (γ,Γ) (H2) verify_concrete Γ γ f = true

Let f ′ ∈ dom(Γ)

To prove (G1) I|= (γ [f ← d] ,Γ [f ← s])

If f ′ ∈ dom(Γ), then (G1) is trivially true from (H1). We consider the
other case, where f ′ = f . We only have to prove that γ |= s.
Let θ, σ, σ′, o, v such that

(H3) θ, σ |= P (H4) γ ⊢ σ, e ⇓θ o : (v, σ′)

To prove

(G2) o ̸= Miss ∧ θ [r← v] , σ′ |= Qo ∗ True

From (H3), the fact that σ = 0 • σ and the validity of the assertion
producer (Theorem 5.6), we have that

(H5) 0.prodP (θ)⇝ σ

238 gillian

The difficult part of the proof is to find that evaluation of e within the
specification context Γ′ finds the trace of the hypothesis (H4), when e
might make recursive calls to f . More formally, we want to prove the
goal:

(G3) ∃o′′, σ′′, v′′. γ,Γ ⊢ σ, e ⇓θ o′′ : (v′′, σ′′) ∧
(o′′ /∈ {Miss, Lfail} =⇒ o′′ = o ∧ v′′ = v ∧ σ′′ = σ′)

Thankfully, hypothesis (H4) provides a finite trace of execution for
e, which must have a finite depth of recursive calls to f (recall that
over-approximating specifications give no guarantee of termination, and
of what happens in case of non-termination). Goal (G1) can therefore
be obtained by strong induction1 on the depth of recursive calls to f in 1 Strong induction, here, refers to

the induction technique where the
inductive case assumes that the
results holds for all k ≤ n.

the derivation tree for the evaluation in (H4). In particular, the base
case is when there are no recursive calls to f in the derivation tree, in
which case the hypothesis (H1) immediately gives goal (G1).

In the inductive case, when the derivation tree contains n+1 recursive
calls to f and we assume that the inductive hypothesis holds for k ≤ n.
To prove the inductive case, we must, in turn, perform an induction on
the structure of the expression e. e cannot be a pure expression, as it
could not contain a recursive call.

Then, there are two kinds of cases. First, there is the case of let-
binding, if/else, while, action execution or the function call case when
the function called is not f or when it is f but the evaluation of its
arguments fail. In each of these cases, we must prove that each sub-
expression used also satisfies the goal our goal. In each case, either the
derivation tree for the expression contains a depth less or equal to n
of recursive calls to f , in which case the inductive hypothesis of the
outer induction gives us the result, or the depth of recursive calls to f
is n+ 1, in which case we can apply the inductive hypothesis of the
inner induction.

The only case remaining is when the the function f is successfully
called, with the inference rule given below:

(γ ⊢ σi, ei ⇓θ Ok : (vi, σi+1))
k
i=0

γ ⊢ σn+1, e ⇓θ[x⃗ ↦→v0...vk]
o′′ : (v′′, σ′′)

γ ⊢ σ0, f(e0, ..., ek) ⇓θ o′′ : (v′′, σ′′)

In that case, we can use the outer inductive hypothesis to prove that
the evaluation of the body of f satisfies the goal (G1), since it must
have a depth of recursive calls to f equal to n. This concludes the
proof of the goal (G1).

Now that we have proven (G1), using (H2), we know that the final
outcome of the evaluation of e, (H6) o′′ /∈ Miss, Lfail, and that
therefore (H7) o′′ = o ∧ v′′ = v ∧ σ′′ = σ′.

Finally, also from (H2), we know that there is σf , θf such that
(H8) σ′.consθ′(Qo)→ Ok : (θf , σf). From (H8) and the validity of the
assertion consumer (Theorem 5.9), we obtain that a σQo

such that

(H9) σ′ = σf • σQo (H10) θf , σQo |= Qo

With the definition of assertion satisfiability Definition 5.2, we can

analyses 239

conclude that θ′, σ′ |= QO ∗ True, which together with (H6) and (H7)
gives us our final goal (G2).

Proposition: Symbolic soundness
Now comes the time to check that the symbolic version of the verify

function satisfies the theorem. The proof is obtained by simply noticing
that the symbolic version of exec_verify function is a symbolic process
that is sound with respect to the concrete version. In particular, for
give Γ, γ and f , the symbolic version is a symbolic process that takes no
arguments (conceptually, it receives the symbolic unit argument), and
returns a triple composed of a logic outcome, a symbolic substitution
and a symbolic state.

The symbolic version of exec_verify is sound, as it is obtained from
by composing ound processes. All functions composed have a symbolic
counterpart, except the construction of the initial substitution, which is
done through nondet in the concrete setting and allocating a fresh var
in the symbolic setting. A fresh symbolic variable is unconstrained, and
is therefore modeled by all outcomes of nondet, making this process
sound.

Now, it must be that for any execution path of the concrete exec_verify,
there is a corresponding symbolic path. Because the logical outcome
stays concrete, then it is enough to check that all symbolic paths of end
with Ok to ensure that all concrete paths end with Ok, which concludes
the proof.

D.2 Specification inference procedure

To prove the soundness of the specification inference procedure using
bi-abduction, we start by formulating a concrete version of the bi-
abduction state model and prove that the induced semantics correctly
performs resource inference. We then lift this result to the symbolic
world using judiciously defined abstractions. Finally, we show that the
soundness of specification synthesis, which makes use of the symbolic
bi-abductive execution yields valid UX specifications.

D.2.1 Concrete bi-abduction state model

A concrete bi-abductive state is a pair (σ,A) compose of a concrete
state fragment and a concrete antiframe, that is, an assertion with no
variables. We define action execution, consumption and production for
the bi-abductive state model using inference rules. We only provide
the rules for non-Miss and non-Lfail outcomes, as these are the only
rules relevant for the soundness of the analysis.

240 gillian

bi-action-ok

σ.α(v⃗)
S
⇝ o : (v′, σ′) o ∈ {Ok, Err}

(σ,A).α(v⃗)
Bi(S)
⇝ o : (v′, (σ′, A))

bi-action-fix

σ.α(v⃗)
S
⇝ Miss : (vfix ,_)

A′ ∈ fixes vfix σ.prodA′()
S
⇝ σ′′

σ′′.α(v⃗)
S
⇝ o : (v, σ′)

(σ,A).α(v⃗)
Bi(S)
⇝ o : (v, (σ′, A ∗A′))

bi-cons-ok

σ.consα(v⃗i)
S→ Ok : (v⃗o, σ

′) o = Ok

(σ,A).consα(v⃗i)
Bi(S)→ Ok : (v⃗o, (σ

′, A))

bi-cons-fix

σ.consδ(v⃗i)
S→ Miss : (vfix ,_)

A′ ∈ fixes vfix σ.prodA′()
S
⇝ σ′′

σ′′.consδ(v⃗i)
S→ Ok : (v⃗o, σ

′)

(σ,A).δ(v⃗i)
Bi(S)
⇝ Ok : (v⃗o, (σ

′, A ∗A′))

bi-prod

σ.prodδ(v⃗i, v⃗o)
S
⇝ σ′

(σ,A).prodδ(v⃗i, v⃗o)
Bi(S)
⇝ (σ′, A)

Lemma D.1 (Concrete bi-abductive actions: soundness).

(σ, emp).α(v⃗)
Bi
⇝ o : (v, (σ′, A)) ∧ o ∈ {Ok, Err}

=⇒ ∃σs. σ.prodA()⇝ σs ∧ σs.α(v⃗)⇝ o : (v, σ′)

Proof. Assume

(H1) (σ, emp).α(v⃗)
Bi
⇝ o : (v, (σ′, A))

(H2) o /∈ {Miss, Lfail}

To prove (G1) ∃σs. σ.prodA()⇝ σs ∧ σs.α(v⃗)⇝ o : (v, σ′)

By inversion, there are only two rules that can lead to (H2): bi-action-

ok and bi-action-fix. We consider the two cases separately.

Case bi-action-ok:
In this case, we have the following new hypotheses:

(H3) σ.α(v⃗)⇝ o : (v, σ′)

(H4) A = emp

By selecting σs = σ, we trivially obtain (G1) from (H3) and (H4).

Case bi-action-fix:
In this case, we have the following new hypotheses:

(H5) σ.α(v⃗)⇝ Miss : (vfix ,_) (H6) A ∈ fixes vfix

(H7) σ.prodA()⇝ σ′′ (H8) σ′′.α(v⃗)⇝ o : (v, σ′)

(H9) o ∈ {Ok, Err}

(H7), and (H8) immediately give the goal (G1) by selecting σs = σ′′.

analyses 241

Lemma D.2 (Concrete bi-abductive consumption: soundness).
If P is a strictly-exact assertion then

(σ, emp).consP (θ)
Bi→ Ok : (θ′, (σ′, A)) ∧ θ′, σP |= P ∧ σP # σf

=⇒ ∃σA. σA |= A ∧ σP • σf = σA • σ

Proof. Assume

(H1) (σ, emp).consP (θ)
Bi→ Ok : (θ′, (σ′, A))

(H2) θ′, σP |= P

(H3) σP # σf

To prove (G1) ∃σA. σA |= A ∧ σP • σf = σA • σ

Since consumption is successful, we know that P can be decomposed
into a list of core predicates ⟨δj⟩(e⃗ji ; e⃗

j
o) |nj=1 which are successfully

consumed one by one according to the plan. We define σ0 = σ and
θ0 = θ and A0 = emp. At each step of consumption, we obtain a new
state, substitution and antiframe σj+1, θj+1 and Aj+1. We know that
the anti-frame is monotonically extended, so that Aj+1 = Bj+1 ∗ Aj

for some B that is either a fix that allowed consumption to continue,
or emp if the consumption was successful without any fix. Finally, we
denote Pj = �j

k=1⟨δk⟩(e⃗
k
i ; e⃗

k
o).

We prove the following goal for all 0 ≤ j ≤ n, by induction on j, which
implies the goal (G1) for j = n:

(G2) ∃σPj , σAj . σAj |= Aj ∧ σPj
• σj = σAj

• σ

Case Base case, j = 0:
P0 = emp, Aj = emp, σ0 • 0 = 0 • σ with 0 |= emp. So trivially true.

Case Inductive case, j + 1:
We assume the inductive hypothesis:

(IH1)j ∃σPj
, σAj

. θj , σPj
|= Pj ∧ σAj

|= Aj ∧ σPj
• σj = σAj

• σ

And aim to prove (IH1)j+1.
We have, by inversing the consume-step rule, and because we’ve already
proved of the correctness of the parametric consumer:

(H4) Je⃗j+1
i Kθj+1

= v⃗j+1
i

(H5) (σj , Aj).consδj+1(v⃗j+1
i)

Bi→ Ok : (v⃗j+1
o , (σj+1, Bj+1 ∗Aj))

(H6) Je⃗j+1
o Kθj+1

= v⃗j+1
o

From (H5) by definition of the bi-abductive state model consumer we
have ∃σBj+1

:

(H7) σBj+1
|= Bj+1

(H8) (σj • σBj+1
).consδj+1(v⃗j+1

i)
S→ Ok : (v⃗j+1

o , σj+1)

Using (H4), (H6) and (H10), the validity of consumers for S, and the
definition of satisfiability for assertions, there exists σδj+1

such that

242 gillian

(H9) θj+1, σδj+1
|= ⟨δj+1⟩(v⃗j+1

i ; v⃗j+1)

(H10) σj • σBj+1 = σδj+1
• σj+1

From (H3), we know that σP #σf . We also know that θ′, σP |= P and P
is strictly exact, so it is the unique model of P under that substitution.
Using a decreasing induction, we can deduce that (σPj

• σδj+1) # σj+1

at each step, as otherwise the final step would not be disjoint.
By defining σPj+1

= σPj
• σδj+1 and σAj+1

= σAj
• σBj+1

, we can now
compute:

σj+1 • σPj+1
= σj+1 • (σδj+1 • σPj

) by def.
= (σj+1 • σδj+1) • σPj

by assoc
= (σj • σBj+1) • σPj by (H10)
= (σj • σPj

) • σBj+1
assoc. and commut.

= (σ • σAj
) • σBj+1

using(IH1)j
= σ • (σAj

• σBj+1) assoc.
= σ • σAj+1

def.

Which establishes our inductive hypothesis for j + 1.

Lemma D.3 (Concrete bi-abductive specification execution: sound-
ness).
If S = [P] f(x⃗) [o : r. Q] is a valid ISL specification, and γ(f) =

f(x⃗) {e}

γ |= S ∧ (σ, emp).specS(θ)
Bi
⇝ o : (v, (σ′, A)) ∧ o ∈ {Ok, Err}

=⇒ ∃σs. σ.prodA()
S
⇝ σs ∧ γ ⊢ σs, e ⇓Sθ o : (v, σ′)

Proof. let [P] f(x⃗) [o : r. Q] be the specification S.

(H1) γ |= S

(H2) (σ, emp).specS(θ)
Bi
⇝ o : (v, (σ′, A))

(H3) o ∈ {Ok, Err}

To prove : (G1) ∃σs. σ.prodA()
S
⇝ σs ∧ σs.α(v⃗)

S
⇝ o : (v, σ′)

From (H2), (H3) and by inversion on Exec-Spec-Success, we get
that:

(H4) (σ, emp).consP (θ)
Bi→ Ok : (θ′, (σf , A))

(H5) (σf , A).prodQ(θ
′ [r← v])⇝ (σ′, A)

From (H5), we know that: ∃σQ such that:

(H6) θ′ [r← v] , σQ |= Q

(H7) σ′ = σQ • σf

(H1) tells us that S is a valid ISL specification, and hence, since we have
a model of Q ((H6)), there exists a state fragment σP and a transition:

(H8) θ′, σP |= P

analyses 243

(H9) γ ⊢ σP , e ⇓Sθ′ o : (v, σQ)

where f(x⃗) {e} = γ(f).
From (H9), (H7) that indicates that σQ # σf , and the fact that the
semantics is UX-frame-preserving and satisfies Frame addition, we get:

(H10) γ ⊢ σP • σf , e ⇓Sθ′ o : (v, σ′)

Then, from (H4), (H8), (H10) (which implies that σP # σf), and
Lemma D.2, we get that ∃σA:

(H11) σA |= A

(H12) σP • σf = σA • σ

Let σS = σA • σ. By validity of producer and (H11), definition of σS ,
(H12) and (H10), we obtain the goal (G1).

244 gillian

Theorem 7.3 (Concrete bi-abductive execution: soundness).
If UX|= (γ,Γ), then

γ,Γ ⊢ (σ, emp), e ⇓Bi(S)θ o : (v, (σ′, A)) ∧ o /∈ {Miss, Lfail}
=⇒ ∃σs. σ.prodA()⇝ σs ∧ γ ⊢ σs, e ⇓Sθ o : (v, σ′)

Proof. First, we introduce an intermediate lemma which can be trivially
proven using the rules above:

(σ,A).α(v⃗)
Bi
⇝ o : (v, (σ′, A′)) =⇒

∃A′′. (A′ ⇔ A ∗A′′) ∧ (σ, emp).α(v⃗)
Bi
⇝ o : (v, (σ′, A′′))

(Antiframe mono)
In other words, the anti-frame is monotonically increasing, and the
input anti-frame is irrelevant and maintained.
We proceed with the proof of our lemma by induction on the structure
of e. The only base case is the evaluation of a pure expression, which
cannot end in a missing error, and therefore the induction goal trivially
holds, similarly to the first case of the proof above.
There are illustrative cases: sequential composition using let-binding
and action evaluation. The most important case is sequential composi-
tion, as it illustrates how several operations that preserve the property
can be composed together.

Case e = let x = e1 in e2:
Assume Inductive hypotheses:

(IH1)
γ,Γ ⊢ (σ, emp), e1 ⇓Bi(S)θ o : (v, (σ′, A)) ∧ o /∈ {Miss, Lfail}

=⇒ ∃σs. σ.prodA()⇝ σs ∧ γ ⊢ σs, e1 ⇓Sθ o : (v, σ′)

(IH2)
γ,Γ ⊢ (σ, emp), e2 ⇓Bi(S)θ o : (v, (σ′, A)) ∧ o /∈ {Miss, Lfail}

=⇒ ∃σs. σ.prodA()⇝ σs ∧ γ ⊢ σs, e2 ⇓Sθ o : (v, σ′)

Assume

(H1) γ,Γ ⊢ (σ, emp), e ⇓Bi(S)θ o : (v, (σ′, A′))

(H2) o /∈ {Miss, Lfail}

To prove (G1) ∃σs. σ.prodA′()⇝ σs ∧ γ ⊢ σs, e ⇓Sθ o : (v, σ′)
There are two sub-cases: either the evaluation of e1 yields a Err

outcome, or it yields a Ok outcome and the subsequent evaluation of
e2 yields a Ok or Err outcome. In the first case, we can immediately
apply the inductive hypothesis (IH1) to obtain the goal. We consider
the second case:

(H3) γ,Γ ⊢ (σ, emp), e1 ⇓Bi(S)θ Ok : (v1, (σ1, A1))

(H4) γ,Γ ⊢ (σ1, A1), e2 ⇓Bi(S)θ[x←v1]
o : (v, (σ′, A′))

By (IH1) and (H3), we have that there is a σ1
s such that:

(H5) σ.prodA1
()⇝ σ1

s

(H6) γ ⊢ σ1
s , e ⇓Sθ Ok : (v1, σ1)

By using Antiframe mono on (H4), we obtain that there is a A2 such
that:

analyses 245

(H7) A′ ⇔ A1 ∗A2

(H8) γ,Γ ⊢ (σ1, emp), e2 ⇓Bi(S)θ[x←v1]
o : (v, (σ′, A2))

From (H8) and (IH2), we get that there is σ2
s such that:

(H9) σ1.prodA2
()⇝ σ2

s

(H10) γ ⊢ σ2
s , e2 ⇓Sθ[x←v1]

o : (v, σ′)

From (H9), we have that ∃σA1
such that:

(H11) σ2
s = σ1 • σA2

(H12) σA2
|= A2

From (H11), (H6) and Frame addition, we have that

(H13) γ ⊢ σ1
s
• σA2

, e ⇓Sθ Ok : (v1, σ
2
s)

By validity of producer and (H12), we have that:

(H14) σ1.prodA2
()⇝ σ1

s
• σA2

From (H5), (H14) and definition production of A1 ∗A2, we have that:

(H15) σ.prodA1∗A2
()⇝ σ1

s
• σA2

In addition, from (H13) and (H10), and (H11) we have that:

(H16) γ ⊢ σ1
s
• σA2 , e ⇓Sθ o : (v, σ′)

Together, (H15) and (H16) give us the induction goal (G1).

Case e = α(e1, ..., ek):
We do not provide this proof in detail as it can be obtained from com-
posing arguments already exposed. First, all arguments are evaluated
left-to-right. It can be proven by a simple induction that leverages the
exact same arguments as the proof of the let-binding case that sequen-
tially evaluating all of the arguments preserves the desired property.
Then, action evaluation also preserves the desired property, as shown
in Lemma D.1. By composing these two results, we obtain our goal.

Case e = f(e1, ..., ek):
This case is similar to the action case, but makes use of Lemma D.3
instead of Lemma D.1.

D.2.2 Specification synthesis

Now that we have shown that, concretely, the bi-abduction state model,
when execution finishes without reasoning error, produces the anti-
frame that allows for this execution, we show that the specification
synthesis is correct. We first show that the symbolic version of the
bi-abduction sate model is sound with respect to the concrete version,
and then show that the symbolic specification synthesis is sound.

246 gillian

We provide the rule for sucessful specification synthesis:

spec-synth

f(x⃗) {e} = γ(f) y⃗ = fv(P) θ
x⃗,y⃗

id = [x⃗ ↦→ x⃗, y⃗ ↦→ y⃗]

0.prodP (θ
x⃗,y⃗

id)⇝ σ

γ,Γ ⊢ (σ, emp), e ⇓Bi(S)
θ
x⃗,y⃗
id

⟨o : (v, (σ′, A)) | π⟩ o ∈ {Ok, Err}

P ′ = P ∗
←−
θ
x⃗,y⃗

id A Q = to_asrt θ
x⃗,y⃗

id v σ′ π

[P ′] f(x) [o : r. Q] ∈ synthesise γ Γ f P

where to_asrt is such that if Q = to_asrt θ
x⃗,y⃗

id v σ π, then,

ε, (v, σ) |= ⟨(v, σ) | π⟩
⇐⇒ ε(θ

x⃗,y⃗

id) [r← v] , σ |= Q

Theorem 7.2 (Specification synthesis: soundness).

|= (γ,Γ) ∧ [P ′] f(x⃗) [o : r. Q ∗R] ∈ synthesise Γ γ f P

=⇒ γ |= [P ′] f(x⃗) [o : r. Q ∗R]

Proof.

(H1) |= (γ,Γ)

(H2) [P ′] f(x) [o : r. Q] ∈ synthesise γ Γ f P

By inversion on spec-synth for (H2), we have the following new
hypotheses, where γ(f) = f(x⃗) {e}, y⃗ = fv(P) and θ

x⃗,y⃗

id = [x⃗ ↦→ x⃗, y⃗ ↦→
y⃗]:

(H3) 0.prodP (θ
x⃗,y⃗

id)
S
⇝ σ

(H4) γ,Γ ⊢ (σ, emp), e ⇓Bi(S)
θ
x⃗,y⃗
id

⟨o : (v, (σ′, A)) | π⟩

(H5) o ∈ {Ok, Err}

(H6) P ′ = P ∗
←−
θ
x⃗,y⃗

id (A)

(H7) Q = to_asrt θ
x⃗,y⃗

id v σ′ π

We want to prove that γ |= [P ′] f(x) [o : r. Q]. Let θ, o, σ′, v such
that

(H8) θ [r← v] , σ′ |= Q

To prove (G1) ∃σs. θ, σs |= P ′ ∧ γ ⊢ σs, e ⇓θ o : (v, σ′)
Take ε such that ε(θ

x⃗,y⃗

id) = θ. This is possible because θ
x⃗,y⃗

id is a sub-
stitution with only symbolic variables in the codomain, so ε can be
constructed as [x0 ↦→ θ(x0), . . .].
By definition of to_asrt, we have:

(H9) ε, (v, σ′) |= ⟨(v, σ′) | π⟩

Since the anti-frame is an assertion with symbolic values instead of
assertions, it can be concretized using ε by concretizing each symbolic
value to a concrete value. We define A = A(ε).
By definition of satisfiability for symbolic branches, and using (H9) we
have that:

analyses 247

(H10) ε, (o : (v, (σ′, A))) |= ⟨o : (v, (σ′, A)) | π⟩

From (H1), (H10), and the UX-soundness of bi-abductive execution,
we have that ∃σ, θ′. :

(H11) γ ⊢ (σ, emp), e ⇓Bi(S)θ′ o : (v, (σ′, A))

(H12) ε, θ′ |= θ
x⃗,y⃗

id

(H13) ε, σ |= σ′

Because θ
x⃗,y⃗

id may only have one model under ε, using (H12) and the
construction of ε, we have (H14) θ = θ′.
From (H11), (H14) and the soundness of concrete bi-abductive execu-
tion, we have that ∃σs. :

(H15) σ.prodA()⇝ σs

(H16) γ ⊢ σs, e ⇓θ o : (v, σ′)

The only property left to prove is that θ, σs |= P ′.
First, from (H15), the definition of A = ε(A), and the relationship
between ε(θ

x⃗,y⃗

id) = θ, we have that:

(H17) σ.prod←−
θ
x⃗,y⃗
id (A)

(θ)⇝ σs

and hence, by validity of the producer and (H17), we have ∃σA such
that

(H18) σs = σA • σ (H19) θ, σA |=
←−
θ
x⃗,y⃗

id (A)

Furthermore, from (H13), (H3), and the UX soundness of the producer,
we have ∃σ0, θ′′.

(H20) ε, σ0 |= 0

(H21) ε, θ′′ |= θ
x⃗,y⃗

id

(H22) σ0.prodP (θ
′′)⇝ σ

By definition of 0, and because θ
x⃗,y⃗

id has only one model under ε, these
three hypotheses together give us:

(H23) θ, σ |= P

Together, (H19), (H23), (H18) and the definition of assertion satisfia-
bility give us:

(H24) θ, σs |= P ′

(H24) was the last require to obtain our (G1).

Appendix E

Constructing State Models

E.1 Product of state models

Lemma 8.1 (Product state model: concrete soundness).
If S1

c∼
m

S1 according to |=1c and S2
c∼
m

S2 according to |=2c, then

(S1 S2)
c∼
m

(S1 S2) according to |=1×2
c where

(σ1, σ2) |=1×2
c (σ1, σ2)⇔ σ1 |=1

c σ1 ∧ σ2 |=2
c σ2

In mathematical notations:

S1
c∼
m

S1 ∧ S2
c∼
m

S2 ⇒ (S1 S2)
c∼
m

(S1 S2)

Proof.

Proposition: frame addition We assume that actions of each pa-
rameter state models satisfy frame addition.

(H1) σ1.α1(v⃗)⇝ o : (v′, σ′1) ∧ σ′1 # σf
1 ∧ o ̸= Miss

=⇒ (σ1 • σ
f
1).α1(v⃗)⇝ o : (v′, σ′1 • σ

f
1)

(H2) σ2.α2(v⃗)⇝ o : (v′, σ′2) ∧ σ′2 # σf
2 ∧ o ̸= Miss

=⇒ (σ2 • σ
f
2).α2(v⃗)⇝ o : (v′, σ′2 • σ

f
2)

Let σ = (σ1, σ2), σ′ = (σ′1, σ
′
2) and σf = (σf

1 , σ
f
2).

Let us assume the left-hand side of the frame addition implication:

(H3) σ.α(v⃗)⇝ o : (v′, σ′) (H4) σf # σ′

Our goal is to prove (G1) (σ • σf).α(v⃗)⇝ o : (v′, σ′ • σf).
There are two symmetric cases: either α = A1 α1 or α = A2 α2. We
only consider the first case, the second being analogous.

(H5) α = A1 α1

According to the definition of action evaluation in the compositional
state model, we know from (H3) that:

(H6) σ1.α1(v⃗)⇝ o : (v′, σ′1)

(H7) σ′2 = σ2

Furthermore, from the definition of σf and (H4), we also learn that:

(H8) σ′1 # σf
1 (H9) σ′2 # σf

2

We can apply (H1) using (H6) and (H8), obtaining

(H10) (σ1 • σ
f
1).α1(v⃗)⇝ o : (v′, σ′1 • σ

f
1)

250 gillian

By definition of action evaluation in the pair, (H5) and (H9), we can
derive

(H11) (σ1 • σ
f
1 , σ2 • σ

f
2).α(v⃗)⇝ o : (v′, σ′1 • σ

f
1 , σ2 • σ

f
2)

Finally, the above (H11) together with (H7) is our goal (G1).

Proposition: frame subtraction
We assume that actions of each parameter state models satisfy frame
subtraction.

(H1)
σ1 • σ

f
1 .α1(v⃗)⇝ o : (v, σ′1) =⇒

(∃o′, v′, σ′′1 . σ1.α1(v⃗)⇝ o′ : (v′, σ′′1)∧
(o′ ̸= Miss⇒ σ′1 = σ′′1 • σf

1 ∧ o = o′ ∧ v = v′))

(H2)
σ2 • σ

f
2 .α2(v⃗)⇝ o : (v, σ′2) =⇒

(∃o′, v′, σ′′2 . σ2.α2(v⃗)⇝ o′ : (v′, σ′′2)∧
(o′ ̸= Miss⇒ σ′ = σ′′2 • σf

2 ∧ o = o′ ∧ v = v′))

Assume (H3) σ • σf .α(v⃗)⇝ o : (v′, σ′)

There are two cases, either α = A1 α1 or α = A2 α2.

Case α = A1 α1:
We have that:

(H4) σ = (σ1, σ2)

(H5) σf = (σf
1 , σ

f
2)

(H6) (σ1 • σ
f
1).α1(v⃗)⇝ o : (v′, σ′1)

(H7) σ′ = (σ′1, σ2 • σ
f
2)

From (H1) and (H6), we can derive that there exist o′, v′, σ′′1 such that:

(H8) σ1.α1(v⃗)⇝ o′ : (v′, σ′′1)

(H9) o′ ̸= Miss⇒ σ′1 = σ′′1 • σf
1 ∧ o = o′ ∧ v = v′

Since the second element of the state remains unaffected by the action,
we also have that, using (H8):

(H10) (σ1, σ2).α(v⃗)⇝ o′ : (v′, (σ′′1 , σ2))

Furthermore, if o′ ̸= Miss, from (H9) we get our full goal.

Proposition: concrete soundness The proof goes similarly to that
of frame-preservation, we elide it here.

Lemma 8.3 (Product state model: producers and consumers).
The producer and consumer of the product compositional state models
are valid according to Definition 5.5 and Definition 5.7.

Proof.

Proposition: Validity of the producer
We assume that the producer of each parameter state model is valid:

constructing state models 251

(H1) S1.produce σ1 δ1 v⃗i v⃗o = {σ1 • σ′1 | σ′1 |= ⟨δ1⟩(v⃗i; v⃗o)}

(H2) S2.produce σ2 δ2 v⃗i v⃗o = {σ2 • σ′1 | σ′1 |= ⟨δ2⟩(v⃗i; v⃗o)}

We want to prove that the producer of the product state model is valid:

(G1) (S1 S2).produce σ δ v⃗i v⃗o = {σ • σ′ | σ′ |= ⟨δ⟩(v⃗i; v⃗o)}

Let δ be a core predicate of the product state model and σ = (σ1, σ2).
There are two cases, either δ = C1 δ1 or δ = C2 δ2. We only consider
the first case, the second being analogous

(H3) δ = C1 δ1

According to the definition of the producer in the product state model,
we know that:

(S1 S2).produce δ (σ1, σ2) v⃗i v⃗o

= {(σ′1, σ2) | σ1 ∈ S1.produce δ σ1 v⃗i v⃗o} (by (H3))
= {(σ′1, σ2) | σ′1 ∈ {σ1 • σ′′1 | σ′′1 |= ⟨δ1⟩(v⃗i; v⃗o)}} (by (H1))
= {(σ1 • σ′1, σ2) | σ′1 |= ⟨δ1⟩(v⃗i; v⃗o)}
= {(σ1, σ2) • (σ′1, 0) | σ′1 |= ⟨δ1⟩(v⃗i; v⃗o)} (def. of •)
= {σ • σ′ | σ′ |= ⟨δ⟩(v⃗i; v⃗o)} (by (H3) & def.)

The last line of the above derivation is our goal (G1).

Proposition: Validity of the consumer
We elide the proof that the consumer of the product state model does
not yield missing on full states (as it is trivially true). We only prove
that the consumer of the product state model preserves CP Consuming.

(H1) σ1.consδ1(v⃗i)→ Ok : (v⃗o, σ
′
1)

=⇒ ∃σδ1 . σ = σ′1 • σδ1 ∧ σδ1 |= ⟨δ1⟩(v⃗i; v⃗o)

(H2) σ2.consδ2(v⃗i)→ Ok : (v⃗o, σ
′
2)

=⇒ ∃σδ2 . σ = σ′2 • σδ2 ∧ σδ2 |= ⟨δ2⟩(v⃗i; v⃗o)

Let δ be a core predicate for the product state model.
Assume (H3) (σ1, σ2).consδ(v⃗i)→ Ok : (v⃗o, (σ

′
1, σ
′
2))

We want to prove the following goal:

(G1) ∃σδ. σ = (σ′1, σ
′
2) • σδ ∧ σδ |= ⟨δ⟩(v⃗i; v⃗o)

There are two cases, either δ = C1 δ1 or δ = C2 δ2. We only consider
the first case, the second being analogous

(H4) δ = C1 δ1

From the definition of the consumer in the product state model, we
know that:

(H5) σ1.consδ1(v⃗i)→ Ok : (v⃗o, σ
′
1) (H6) σ2 = σ′2

From (H5) and (H1), we can derive that there exist a state σδ1 such
that:

(H7) σ1 = σ′1 • σδ1 (H8) σδ1 |= ⟨δ1⟩(v⃗i; v⃗o)

252 gillian

Moreover, by definition of the unit element in a partial commutative
monoid, and (H6), we have that (H9) σ2 = σ′2 • 0.
Furthermore, by definition of core predicate satisfiability in the product
state model and (H8) we have that:(H10) (σδ1 , 0) |= ⟨δ⟩(v⃗i; v⃗o)
Finally, (H7) and (H9), together with the definition of composition in
the product state model gives us (H11) (σ1, σ2) = (σ′1, σ

′
2) • (σδ1 , 0).

The above (H11) and (H10) form our goal (G1).

Lemma 8.4 (Product state model: symbolic soundness).

S1
s∼
m

S1 ∧ S2
s∼
m

S2 ⇒ (S1 S2)
s∼
m

(S1 S2)

Proof. The proof is performed in two steps. First, it is to be noted
that in the compositional state model, all of the operations can be
redefined by explicitely applying the product projection operations fst
and snd lifted to the non-determinism monad, i.e., fst∗ = λ(a, b). {a}
and snd∗ = λ(a, b). {b}).
For example, the producer then becomes:
let produce δ σ v⃗i v⃗o =
let* σ1 = fst∗ σ in
let* σ2 = snd∗ σ in
match δ with
(* ... *)

A similar transformation can be applied to the symbolic state model,
lifting the fst and snd operations to the symbolic execution monad,
i.e., fst = λ(a∗, b

∗
). {⟨a∗ | true⟩} and snd = λ(a∗, b

∗
). {⟨b∗ | true⟩}.

We trivially have that fst
s∼ fst∗ and snd

s∼ snd∗„ easily obtained
from the definition of the interpretation of symbolic states.
After proving the above, the main result is obtained by
1. putting the new definitions of the symbolic and compositional prod-

ucts next to each other;
2. performing case analysis on the kind of action (A1 α1 or A2 α2) or

core predicate (C1 δ1 or C2 δ2); and
3. applying Theorem 6.16 as many times as required.

E.2 State model of values

We provide the definition of the full state model of values for use in
proofs.
module V (τ : T)= struct

type Σ = τ

type A = Load | Store

let eval_action α σ v⃗ =
match α, v⃗ with
| Load, [] → ok (σ, σ)
| Store, [σ′] → ok ((), σ′)
| _ → error (InvalidArguments, σ)

end

constructing state models 253

E.3 Exclusive ownership

We first provide the full definition of the exclusive ownership state
model.
module Exc (τ : T) = struct

type Σ = τ | ⊥
val 0 = ⊥

type A = Load | Store
let eval_action α σ v⃗ =

match α, v⃗, σ with
| Load, _, ⊥ → miss (MissingValue, σ)
| Load, [], σ → ok (σ, σ)
| Store, [σ′], ⊥ → miss (MissingValue, σ)
| Store, [σ′], σ → ok ((), σ′)
| _, _, _ → fail (InvalidArguments, σ)

type ∆ = Exc

let produce σ Exc v⃗i v⃗o =
match σ, v⃗i, v⃗o with
| ⊥, [], [σ] → σ

| _ → vanish

let consume σ Exc v⃗i =
match σ, v⃗i with
| σ, [] → ok ([σ], ⊥)
| ⊥, [] → miss (MissingValue, σ)
| _, _ → error (InvalidArguments, σ)

end

Relationship between the exclusive ownership state model and the
value state model is defined as follows:

∀v ∈ τ. v |=c v

⊥ ̸|=c v

In addition, composition is defined as:

σ • ⊥ = σ

σ • σ′ undefined otherwise

And predicate satisfiability as:

σ |= ⟨Exc⟩(;σ) ⇐⇒ σ ̸= ⊥

Lemma E.1 (Exclusive ownership: concrete soundness).

Exc
c∼
EX

V

Proof. Proposition: Frame addition Assume

(H1) σ.α(v⃗)⇝ o : (v, σ′)

(H2) σf # σ′

(H3) o ̸= Miss

To prove (G1) σ • σf .α(v⃗)⇝ o : (v, σ′ • σf)

There are three difference cases: Successful load, successful store and
invalid arguments. Case Successful load:

254 gillian

(H4) α = Load

(H5) o = Ok

(H6) σ′ = σ = v

(H7) σ ̸= ⊥

From (H2) and (H6) we get (H8) σ # σf .
From (H8) and definition of composition, we get that (H9) σf = ⊥.
Finally, from (H9) and (H1) we get the goal (G1).

Case Successful store and invalid arguments: Similar to the
above case.

Proposition: Frame subtraction
Assume

(H1) σ • σf .α(v⃗)⇝ o : (v, σ′)

To prove

(G1)
∃o′, v′, σ′′. σ.α(v⃗)⇝ o′ : (v′, σ′′) ∧

(o′ ̸= Miss⇒ σ′ = σ′′ • σf ∧ o = o′ ∧ v = v′)

There is no case where execution may vanish, we know that ∃o′, v′, σ′′

such that
(H2) σ.α(v⃗)⇝ o′ : (v′, σ′′)

Assume now that (H3) o′ ̸= Miss. There remain 3 possible cases:
Successful load, successful store and invalid argument. For a change,
we consider the successful store first.

Case Successful store:

(H4) α = Store

(H5) o = Ok

(H6) v′ = ()

(H7) v⃗ = [σ′]

Then, σ •σf is defined, so either σ or σf is ⊥. If σ is ⊥, then o′ = Miss,
which goes against (H3). So (H8) σf = ⊥. From (H8), we immediately
get the require results.

Case Successful load and invalid arguments: Similar to the above
case.

Proposition: Concrete UX-soundness
Assume

(H1) σ.α(v⃗)⇝ o : (v, σ′)

(H2) σ′ |= σ′

(H3) o ̸= Miss

constructing state models 255

To prove (G1) ∃σ.σ.α(v⃗)⇝ o : (v, σ′) ∧ σ |= σ

There are three difference cases: Successful load, successful store and
invalid arguments. Case Successful load:

(H4) α = Load

(H5) o = Ok

(H6) σ′ = σ = v

(H7) σ ̸= ⊥

It is clear that σ = σ = v satisfies (G1).
The other cases are analogous.

Proposition: Concrete OX-soundnessThis case is similar to UX-
soundness: the full and partial states are the same, and the behaviours
only differ for the σ = ⊥ case, in which case everything yields Miss

and trivially satisfies the soundness result.

Lemma E.2 (Exclusive ownership: producers and consumers).
The producer and consumer of the exclusive ownership state model are
valid according to the definition of Definition 5.5 and Definition 5.7.

Proof. Proposition: Validity of the producer The only case where

the producer of the Exc core predicate does not vanish is when the
input state is ⊥. In this case, there must be no in-parameter and
a single out-parameter corresponding to the new output state. This
corresponds to all states σ = ⊥•σ such that σ models the core predicate
⟨Exc⟩(;σ). Therefore, the producer is valid

Proposition: Validity of the consumer
Assume

(H1) σ.consExc(v⃗i)→ Ok : (v⃗o, σ
′)

There is a single successful case of consumption, with the following
properties:

(H2) σ ̸= ⊥

(H3) v⃗i = []

(H4) v⃗o = [σ]

(H5) σ′ = ⊥

We know that σ • ⊥ |= ⟨Exc⟩(;σ), so the consumer is valid.

We provide the full symbolic state model of exclusive ownership for
use in proofs.

256 gillian

module Exc (τ : T) = struct

type Σ = τ | ⊥
val 0 = ⊥

type A = Load | Store

let eval_action α σ v⃗ =

match α, v⃗, σ with
| Load, _, ⊥ → miss (MissingValue, σ)
| Load, [], σ → ok (σ, σ)
| Store, [σ′], ⊥ → miss (MissingValue, σ)
| Store, [σ′], σ → ok ((), σ′)
| _, _, _ → error (InvalidArguments, σ)

type ∆ = Exc

let produce σ Exc v⃗i v⃗o =

match σ, v⃗i, v⃗o with
| ⊥, [], [σ] → σ

| _ → vanish

let consume σ Exc v⃗i =

match σ, v⃗i with
| σ, [] → ok ([σ], ⊥)
| ⊥, [] → miss (MissingValue, σ)
| _, _ → error (InvalidArguments, σ)

end

Furthermore, we define satisfiability of the exclusive ownership sym-
bolic states as:

ε,⊥ |= ⊥
ε, σ(ε) |= σ

Lemma E.3 (Exclusive ownership: symbolic soundness).

Exc
s∼
EX

Exc

Proof. Again, by performing a case analysis on the kind of action or
core predicate, the result is obtained by applying Theorem 6.16 as
many times as required.

E.4 Agreement state model

We first provide the full definition of the agreement state model.

module Ag (τ : T) = struct

type Σ = τ | ⊥
val 0 = ⊥

type A = Load
let eval_action α σ v⃗ =

match α, v⃗, σ with
| Load, _, ⊥ → miss (MissingValue, σ)
| Load, [], σ → ok (σ, σ)
| _, _, _ → error (InvalidArguments, σ)

type ∆ = Ag

let produce σ Ag v⃗i v⃗o =
match σ, v⃗i, v⃗o with
| ⊥, [], [σ′] →

σ′

| σ, [], [σ′] →

constructing state models 257

let* = assume (σ = σ′) in
σ

| _ → vanish

let consume σ Ag v⃗i =
match σ, v⃗i with
| σ, [] → ok ([σ], σ)
| ⊥, [] → miss (MissingValue, σ)
| _, _ → error (InvalidArguments, σ)

end

Relationship between the agreement state model and the value state
model is defined as follows:

∀v ∈ τ. v |=c v

⊥ ̸|=c v

In addition, composition is defined as:

σ • σ′ = σ ⇐⇒ σ′ = ⊥ ∨ σ = σ′

σ • σ′ undefined otherwise

And predicate satisfiability as:

σ |= ⟨Ag⟩(;σ) ⇐⇒ σ ̸= ⊥

Lemma E.4 (Agreement state model: compat).
Ag is compatible with the full state model of values without the Store

action.
Ag

c∼
EX

V↿Load

Proof. Proposition: Frame addition

Assume

(H1) σ.α(v⃗)⇝ o : (v, σ′)

(H2) σf # σ′

(H3) o ̸= Miss

To prove (G1) σ • σf .α(v⃗)⇝ o : (v, σ′ • σf)

There are two difference cases: Successful load, invalid arguments.
Case Successful load:

(H4) α = Load

(H5) o = Ok

(H6) σ′ = σ = v

(H7) σ ̸= ⊥

From (H2) and (H6) we get (H8) σ # σf .
From (H8) and definition of composition, we have either that σf = ⊥,
or σf = σ. In both cases, from (H6), we also have that σ′ • σf = σ′,
and therefore the goal (G1) is satisfied.

Case Invalid arguments: Similar to the above case.

Proposition: Frame subtraction
Assume

258 gillian

(H1) σ • σf .α(v⃗)⇝ o : (v, σ′)

To prove

(G1)
∃o′, v′, σ′′. σ.α(v⃗)⇝ o′ : (v′, σ′′) ∧

(o′ ̸= Miss⇒ σ′ = σ′′ • σf ∧ o = o′ ∧ v = v′)

There is no case where execution may vanish, we know that ∃o′, v′, σ′′

such that
(H2) σ.α(v⃗)⇝ o′ : (v′, σ′′)

Assume now that (H3) o′ ̸= Miss. There remain 2 possible cases:
Successful loadand invalid argument.

Case Successful load:

(H4) α = Load

(H5) o = Ok

(H6) v = σ

(H7) v⃗ = []

Then, σ • σf is defined, so either σf is ⊥ or σf = σ.
In either case, we get the goal immediately.

Case Invalid arguments: Similar to the above case.

Proposition: concrete soundness The of concrete proof is exactly
the same as the exclusive case.

Lemma E.5 (Agreement state model: producers and consumers).
The producer and consumer of the agreement state model are valid
according to the definition of Definition 5.5 and Definition 5.7.

Proof. Proposition: Validity of the producer There are two cases

where the producer of the Ag core predicate does not vanish: either
the current state is ⊥, or the current state is equal to the input value.
In both case, the output state is equal to the input value, and hence
the producer is valid.

Proposition: Validity of the consumer
Assume

(H1) σ.consAg(v⃗i)→ Ok : (v⃗o, σ
′)

There is a single successful case of consumption, with the following
properties:

(H2) σ ̸= ⊥

(H3) v⃗i = []

(H4) v⃗o = [σ]

(H5) σ′ = σ

constructing state models 259

We know that σ • σ |= ⟨Ag⟩(;σ), so the consumer is valid.

We provide the full agrement symbolic state model for use in proofs.

module Ag (τ : T) = struct

type Σ = τ | ⊥
val 0 = ⊥

type A = Load

let eval_action α σ v⃗ =

match α, v⃗, σ with
| Load, _, ⊥ → miss (MissingValue, σ)
| Load, [], σ → ok (σ, σ)
| _, _, _ → error (InvalidArguments, σ)

type ∆ = Ag

let produce σ Exc v⃗i v⃗o =

match σ, v⃗i, v⃗o with
| ⊥, [], [σ′] → σ′

| σ, [], [σ′] →
let* = assume (σ = σ′) in
σ

| _ → vanish

let consume σ Exc v⃗i =

match σ, v⃗i with
| σ, [] → ok ([σ], σ)
| ⊥, [] → miss (MissingValue, σ)
| _, _ → error (InvalidArguments, σ)

end

Furthermore, we define satisfiability of the agreement symbolic states
as:

ε,⊥ |= ⊥
ε, σ(ε) |= σ

Lemma E.6 (Agreement state model: symbolic soundness).

Ag
s∼
EX

Ag

Proof. Again, by performing a case analysis on the kind of action or
core predicate, the result is obtained by applying Theorem 6.16 as
many times as required.

E.5 Fractional state model

We first provide the definition of the fractional state model.

module Frac (τ : T) = struct

type Σ = τ × (0, 1] | ⊥
val 0 = ⊥

type A = Load | Store
let eval_action α σ v⃗ =

match α, v⃗, σ with
| Load, _, ⊥ → miss (MissingValue, σ)
| Load, [], (v, q) → ok (v, σ)
| Store, _, ⊥ → miss (MissingValue, σ)
| Store, [v′], (v, q) →

260 gillian

if q = 1 then ok ((), (v′, q)) else
miss (MissingFrac, σ)

| _, _, _ → error (InvalidArguments, σ)

type ∆ = Frac

let produce σ Frac v⃗i v⃗o =
match σ, v⃗i, v⃗o with
| ⊥, [q], [v] →

let* = assume (0 < q ≤ 1) in
return (v, q)

| (v, q), [q′], [v′] →
let* = assume (q < 0 ∧ q + q′ ≤ 1 ∧ v = v′) in
return (v, q + q′)

| _ → vanish

let consume σ Frac v⃗i =
match σ, v⃗i with
| (v, q), [q′] →

if q′ = q then ok (v, ⊥)
else if q′ < q then ok (v, (v, q − q′))
else miss (MissingFrac, σ)

| ⊥, [] → miss (MissingValue, σ)
| _, _ → error (InvalidArguments, σ)

end

Relationship between the factional state model and the value state
model is defined as follows:

∀v ∈ τ. (v, q) |=c v ⇔ q = 1

⊥ ̸|=c v

In addition, composition is defined as:

(v, q) • (v′, q′) = (v, q + q′) ⇐⇒ 0 < q + q′ ≤ 1 ∧ v = v′

σ • ⊥ = σ

σ • σ′ undefined otherwise

And predicate satisfiability as:

(v, q) |= ⟨Frac⟩(q; v) ⇐⇒ 0 < q ≤ 1

Lemma E.7 (Fractional state model: compat).
Frac is compatible with the full state model of values without the Store
action.

Frac
c∼
EX

V

Proof. Proposition: Frame addition

Assume

(H1) σ.α(v⃗)⇝ o : (v, σ′)

(H2) σf # σ′

(H3) o ̸= Miss

To prove (G1) σ • σf .α(v⃗)⇝ o : (v, σ′ • σf)

There are three difference cases: Successful load, Successful store and
invalid arguments.

Case Successful load:

constructing state models 261

(H4) α = Load

(H5) o = Ok

(H6) σ′ = σ = (v, q)

From (H2) and (H6) we get (H7) σ # σf .
From (H7) and definition of composition, we have either that σf = ⊥,
in which case the result is trivially obtained, or σf = (v, q′), in which
case σ • σf = σ′ • σf and the value is unchanged, so the goal is satisfied.

Case Successful store:

(H8) α = Store

(H9) o = Ok

(H10) v⃗ = [v′]

(H11) σ = σ′ = (v, q)

If q < 1 then the result is Miss, which contradicts (H9), so we have
that q = 1. In this case, it must be that σf = ⊥, otherwise it could not
be composed with σ′. From there, the goal is immediately satisfied.

Case Invalid arguments: Similar to the above case.

Proposition: Frame subtraction
Assume

(H1) σ • σf .α(v⃗)⇝ o : (v, σ′)

To prove

(G1)
∃o′, v′, σ′′. σ.α(v⃗)⇝ o′ : (v′, σ′′) ∧

(o′ ̸= Miss⇒ σ′ = σ′′ • σf ∧ o = o′ ∧ v = v′)

There is no case where execution may vanish, we know that ∃o′, v′, σ′′

such that
(H2) σ.α(v⃗)⇝ o′ : (v′, σ′′)

Assume now that (H3) o′ ̸= Miss. There remain 2 possible cases:
Successful load, successful store and invalid argument.

Case Successful load:

(H4) α = Load

(H5) o = Ok

(H6) σ = (v, q)

(H7) v⃗ = []

Then, σ • σf is defined, so either σf is ⊥ or σf = (v, q′) and q + q′ < 1.
In both cases, the state is not modified by load, and the outcome is
still σ • σf , so the goal is satisfied.

Case Successful store:

262 gillian

(H8) α = Store

(H9) o = Ok

(H10) σ = (v, 1)

(H11) v⃗ = [v′]

Since σ •σf is defined, and the fraction of σ is 1, it must be that σf = ⊥,
and from there, the goal is trivially obtained.

Case Invalid arguments: Similar to the above case.

Proposition: Concrete soundness It can be trivially checked that if
σ = (v, 1), then eval_action behaves identically in V and Frac. Then
soundness comes naturally.

Lemma E.8 (Fractional state model: producers and consumers).
The producer and consumer of the fractional state model are valid
according to the definition of Definition 5.5 and Definition 5.7.

Proof. Proposition: Validity of the producer There are two cases

where the producer of the Frac core predicate does not vanish: either
the current state is ⊥, or the current state has a value equal to the
out-parameter of the predicate, and the fractions add up to less than
1. In both case, it coincides with the definition of the core predicate
satisfiability and composition. Therefore, the producer is valid.

Proposition: Validity of the consumer
Assume

(H1) σ.consFrac(v⃗i)→ Ok : (v⃗o, σ
′)

There are two cases of valid consumption. Either the fraction was
entirely consumed, in which case the outcome is bot, or the fraction
was only partially consumed.

Case Fully consumed:

(H2) σ = (v, q)

(H3) v⃗i = [q]

(H4) v⃗o = [v]

(H5) σ′ = ⊥

It can be trivially checked that (v, q) |= ⟨Frac⟩(q; v), and (v, q) = ⊥•(v, q)
so the consumer is valid.

Case Partially consumed:

(H6) σ = (v, q)

(H7) v⃗i = [q′]

constructing state models 263

(H8) 0 < q′ < q

(H9) v⃗o = [v]

(H10) σ′ = (v, q − q′)

Again, in this case, it can be checked that (v, q − q′) • (v, q′) = (v, q),
and (v, q′) |= ⟨Frac⟩(q′; v), so the consumer is valid.

We provide the fractional symbolic state model for use in proofs.

module Frac (τ : T) = struct

type Σ = (τ \times \sym{\nats}) | ⊥
val 0 = ⊥

type A = Load | Store

let eval_action α σ v⃗ =

match α, v⃗, σ with
| Load, _, ⊥ → miss (MissingValue, σ)
| Load, [], (v, q) → ok (v, σ)
| Store, _, ⊥ → miss (MissingValue, σ)
| Store, [v′], (v, q) →

if%sat \sym{q} = 1 then ok ((), (v′, q)) else
miss (MissingFrac, σ)

| _, _, _ → error (InvalidArguments, σ)

type ∆ = Frac

let produce σ Frac v⃗i v⃗o =

match σ, v⃗i, v⃗o with
| ⊥, [q], [v] →

let* = assume (0 < q ≤ 1) in
return (v, q)

| (v, q), [q′], [v′] →
let* = assume (q < 0 ∧ q + q′ ≤ 1 ∧ v = v′) in
return (v, q + q′)

| _ → vanish

let consume σ Frac v⃗i =

match σ, v⃗i with
| (v, q), [q′] →

if q′ = q then ok (v, ⊥)
else if q′ < q then ok (v, (v, q − q′))
else miss (MissingFrac, σ)

| ⊥, [] → miss (MissingValue, σ)
| _, _ → error (InvalidArguments, σ)

end

Furthermore, we define satisfiability of the exclusive ownership sym-
bolic states as:

ε,⊥ |= ⊥
ε, (σ, q) |= (σ(ε), q(ε))

Lemma E.9 (Fraction state model: symbolic soundness).

Frac
s∼
EX

Frac

Proof. Again, by performing a case analysis on the kind of action or
core predicate, the result is obtained by applying Theorem 6.16 as
many times as required.

264 gillian

E.6 Partial maps

We first provide the full partial map state mode, then the compositional
partial map.

module PMap (I: T) (S : Full_state_model) = struct

type Σ = I
fin−−⇀ S.Σ

type A = S.A

let eval_action σ α v⃗ =
match v⃗ with
| i :: v⃗′ → (

match σ(i) with
| Some σc →

let* (v, σ′
c) = S.eval_action σc α v⃗′ in

ok (v, σ [i← σ′
c])

| None → error (InvalidAccess, σ)
)
| _ → error (InvalidArguments, σ)

end

module PMap (I: τ) (S: Compositional_state_model) = struct

type Σ = I
fin−−⇀ S.Σ

type A = S.A

let eval_action σ α v⃗ =
match v⃗ with
| i :: v⃗′ → (

match σ(i) with
| Some σc →

let* (v, σ′
c) = S.eval_action σc α v⃗′ in

if σ′
c = S.0 then ok (v, σ \ {i})

else ok (v, σ [i← σ′
c])

| None →
let* (v, σ′

c) = S.eval_action S.0 α v⃗′ in
if σ′

c = S.0 then ok (v, σ)
else ok (v, σ [i← σ′

c])
)

| _ → error (InvalidArguments, σ)

type ∆ = S.∆

let produce σ δ v⃗i v⃗o =
match v⃗i, v⃗o with
| i :: v⃗′i, v⃗o → (

match σ(i) with
| Some σc →

let* σ′
c = S.produce σc δ v⃗′i v⃗o in

if σ′
c = S.0 then ok (σ \ {i})

else ok (σ [i← σ′
c])

| None →
let* σ′

c = S.produce S.0 δ v⃗′i v⃗o in
if σ′

c = S.0 then ok (σ)
else ok (σ [i← σ′

c])
)
| _, _ → vanish

let consume σ δ v⃗i =
match v⃗i with
| i :: v⃗′i → (
match σ(i) with
| Some σc →

let* (v⃗o, σ′
c) = S.consume σc δ v⃗′i in

if σ′
c = S.0 then ok (v⃗o, σ \ {i})

else ok (v⃗o, σ [i← σ′
c])

| None →

constructing state models 265

let* (v⃗o, σ′
c) = S.consume S.0 δ v⃗′i in

if σ′
c = S.0 then ok (v⃗o, σ)

else ok (v⃗o, σ [i← σ′
c])

)
| _, _ → lfail (InvalidArguments, σ)

end

Note: Admittedly, some of the code above could be factored out for
the handling of the case where the return value of the sub-state model
is S.0.

Composition is defined as:

σ1 • σ2 = λi.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σ(i) if i /∈ dom(σ′)

σ′(i) if i /∈ dom(σ)

σ(i) • σ′(i) if i ∈ dom(σ) ∩ dom(σ′) ∧ σ(i) # σ′(i)

undefined otherwise

Lemma E.10 (Partial map state model: concrete soundness).

S c∼
m

S =⇒ PMap(I, S) c∼
m

PMap(I, S)

Proof. Proposition: propagation of m-soundness The result is

trivially propagated from the concrete state model.

Proposition: Frame addition
Assume ∀σc ∈ S.

(H1)
σ.αc(v⃗)⇝ o : (v, σ′c) ∧ σ′c # σf

c ∧ o ̸= Miss =⇒
σ • σf

c .αc(v⃗)⇝ o : (v, σ′c • σ
f
c)

In addition:

(H2) σ.α(v⃗)⇝ o : (v, σ′)

(H3) σf # σ′

(H4) o ̸= Miss

If v⃗ = [], then the result is trivially obtained. We consider the case
where v⃗ = i :: v⃗′. There are two cases to consider, either σf has a
binding for i, or it does not. If it does not, since the action evaluation
can only modify the binding for i in σ, composition will not interfere
with this binding i.e.

i /∈ dom(σf) ∧ σf # σ′ =⇒
(σ [i← σc]) • (σf) = ((σ • σf) [i← σc])

The goal is then satisfied. The other case is when σf (i) = σf
c . There

are then four more subcases,
• i ∈ dom(σ) and i ∈ dom(σ′);
• i ∈ dom(σ) and i /∈ dom(σ′);
• i /∈ dom(σ) and i ∈ dom(σ′);
• i /∈ dom(σ) and i /∈ dom(σ′).

266 gillian

We handle the first and second case, the other two are similar.

Case i ∈ dom(σ) and i ∈ dom(σ′):
In this case:

(H5) i ∈ dom(σ) and i ∈ dom(σ′)

(H6) σ(i) = σc

(H7) σc.α(v⃗
′)⇝ o : (v, σ′c) with the same outcome o ̸= Miss.

(H8) σ′ = (σ [i← σ′c])

From (H3), (H5) and the definition of composition, we have σf
c # σ′c.

In turn, from (H7) and (H1), we get

(H9) (σc • σ
f
c).α(v⃗

′)⇝ o : (v, σ′c • σ
f
c)

By definion of the action on the partial map state model, we also get
the goal that σ • σf .α(v⃗)⇝ o : (v, σ′ • σf), since every other binding is
left untouched.

Case i ∈ dom(σ) and i /∈ dom(σ′): In this case, necessarily, the action
evaluation yields the 0 of the codomain and the binding gets removed.

(H10) i ∈ dom(σ) and i /∈ dom(σ′)

(H11) σ(i) = σc

(H12) σc.α(v⃗
′)⇝ o : (v, S.0) with the same outcome o ̸= Miss.

(H13) σ′ = σ \ {i}

Because S.0 is necessarily disjoint from any other state, and o ̸= Miss,
we can apply (H1) and learn that σc is disjoint from σf

c , and get a
transition from σc • σ

f
c tp σf

c hence yielding the goal.

Proposition: Frame subtraction
Assume

(H1)
(σc • σ

f
c).αc(v⃗)⇝ o : (v, σ′c) =⇒ (∃o′, v′, σ′′.

σc.α(v⃗)⇝ o′ : (v′, σ′′c) ∧
(o′ ̸= Miss⇒ σ′c = σ′′c • σf

c ∧ o = o′ ∧ v = v′))

In addition: Assume

(H2) (σ • σf).αc(v⃗)⇝ o : (v, σ′)

Again, we only consider the case where v⃗ has at least one integer
argument i, i.e. v⃗ = i :: v⃗′, the other case is trivial. If i /∈ dom(σf),
then σf does not interfere with the binding at i, and the goal is satisfied.
Otherwise, we denote σf

c = σf (i), and there are four cases to consider:
• i ∈ dom(σ) and i ∈ dom(σ′);
• i ∈ dom(σ) and i /∈ dom(σ′);
• i /∈ dom(σ) and i ∈ dom(σ′);
• i /∈ dom(σ) and i /∈ dom(σ′).
Since there are no vanishing transitions, we know that there exists
o′, v′, σ′′ such that

constructing state models 267

(H3) σ.α(v⃗)⇝ o′ : (v′, σ′′)

Furthermore, assume that (H4) o′ ̸= Miss. The case where the list of
values is empty is trivial, so we consider the case where v⃗ = i :: v⃗′.
Either σf has a binding for i, or it does not. If it does not, then the
result is trivially obtained, using the same property used for frame
addition. Otherwise, we have (H5) σf (i) = σf

c . Since the outcome is
not miss, it must also be that i ∈ dom(h), as otherwise it would need
to be in the domain and that would clash with σf . From there, we
have

(H6) h(i) = σc

(H7) (σc • σ
f
c).α(v⃗)⇝ o′ : (v′, σ′c)

(H8) σ′ = (h [i← σ′c] , d
⊥)

From (H7), (H1) and (H4) we have that

(H9) σc.α(v⃗
′)⇝ o′ : (v′, σ′′c)

(H10) σ′c = σ′′c • σf
c

These two last properties put together with the definition of composition
of maps give us the goal.

Lemma E.11 (Partial map state model: producers and consumers).
If the producer and consumer of the codomain S are valid, then the
producer and consumer of the partial map state model PMap(I, S) are
valid.

Proof.

Proposition: Validity of the producer
Assume

(H1) The producer of S is valid.

There are two cases, core predicate is δ with in-parameters v⃗i = i :: v⃗′i
and the case with an invalid number of arguments. The latter case is
trivial and not considered here.
First, recall that the only case for satisfiying the core predicate δ is

[i ↦→ σc] |= ⟨δ⟩(i :: v⃗′i; v⃗o) ⇐⇒ σc |= ⟨δ⟩(v⃗′i; v⃗o)

Such a state can only be composed with σ if
• i /∈ dom(σ), i.e. the binding i is entirely missing from the state; or
• i ∈ dom(σ) and σc can be composed with the current binding at i,

otherwise it should vanish.
In the first case, the goal holds because S.produce is in charge of
producing all states that can be composed, and the right arguments
are passed (v⃗′i and v⃗o).
The second case is where the binding is not in the map. In this case,
since 0 is the identity, all states satisfying ⟨δ⟩(v⃗′i; v⃗o) can be obtained
calling the producer from the state S.0, in which case the binding is
updated.

268 gillian

Since all other cases are vanishing, the producer is valid.

Proposition: Validity of the consumer
Again, we ignore the case of invalid arguments which is trivial, since it
returns Lfail.
Assume

(H1) v⃗i = i :: v⃗′i

(H2) σ.consδ(v⃗i)→ Ok : (v⃗o, σ
′)

From (H2) and the definition of the consumer we have two cases to
consider: either the binding for i is in the heap, or it is not. We only
consider the first case, the other is analogous with σc replaced with 0.

(H3) σ(i) = σc

(H4) σc.consδ(v⃗
′
i)→ Ok : (v⃗o, σ

′
c)

From (H4) and the fact that the consumer of S is valid, we get that
(H5) σc = σ′c • σ

δ
c where (H6) σδ

c |= ⟨δ⟩(v⃗
′
i; v⃗o).

There are two cases of succesful consumption, either σc = S.0 or
σc ̸= S.0.

Case Fully consumed:

(H7) σ′c = S.0

(H8) σ′ = σ \ {i}

Given (H7) and (H5), we have that σc = σδ
c and thererfore, given

σ = σ′ [i← σc], which will add the binding to the heap, and validates
our goal.

Case Partially consumed consumed:

(H9) σ′c ̸= S.0

(H10) σ′ = σ [i← σ′c]

Given (H9) and (H5), we have that σc = σδ
c and thererfore, given

σ = σ′
[︁
i← σδ

c

]︁
, where the binding for i will the composition of σδ

c and
σ′c, which is σc, and validates our goal.

We now give the definition of the symbolic partial map state model
transformer.

let symbolic_map_get σ i =
match σ with
| ∅ → ok None

| [i
′ ↦→ σc] ⊎ σ′ →

if%sat i = i
′
then

ok σc

else

symbolic_map_get σ′ i

module PMap (I: τ) (S: Symbolic_state_model) = struct

type Σ = I
fin−−⇀ S.Σ

constructing state models 269

type A = S.A

let eval_action σ α v⃗ =

match v⃗ with

| i :: v⃗
′ → (

let* opt_i = symbolic_map_get σ i in
match opt_i with
| Some σc →

let* (v, σ′
c) = S.eval_action σc α v⃗

′
in

if%sat σ′
c = S.0 then ok (v, σ \

{︁
i
}︁
)

else ok (v, σ
[︁
i← σ′

c

]︁
)

| None →
let* (v, σ′

c) = S.eval_action S.0 α v⃗
′
in

if%sat σ′
c = S.0 then ok (v, σ)

else ok (v, σ
[︁
i← σ′

c

]︁
)

)
| _ → error (InvalidArguments, σ)

type ∆ = S.∆

let produce σ δ v⃗i v⃗o =

match v⃗i with

| i :: v⃗
′
i → (

let* opt_i = symbolic_map_get σ i in
match opt_i with
| Some σc →

let* σ′
c = S.produce σc δ v⃗

′
i v⃗o in

if%sat σ′
c = S.0 then ok (σ \ i)

else ok (σ
[︁
i← σ′

c

]︁
)

| None →
let* σ′

c = S.produce S.0 δ v⃗
′
i v⃗o in

if σ′
c = S.0 then ok σ

else ok (σ
[︁
i← σ′

c

]︁
)

)
| _ → vanish

let consume σ δ v⃗i =

match v⃗i with

| i :: v⃗
′
i → (

let* opt_i = symbolic_map_get σ i in
match opt_i with
| Some σc →

let* σ′
c = S.consume σc δ v⃗

′
i in

if σ′
c = S.0 then ok (σ \ i, d⊥)

else ok (σ
[︁
i← σ′

c

]︁
, d

⊥
)

| None →
let* σ′

c = S.consume S.0 δ v⃗
′
i in

if σ′
c = S.0 then ok (σ)

else ok (σ
[︁
i← σ′

c

]︁
)

)
| _ → lfail (InvalidArguments, σ)

end

Lemma E.12 (Partial map state model: symbolic soundness).

S s∼
m

S =⇒ PMap(I, S) s∼
m

PMap(I, S)

Proof. Again the proof is performed by case analysis and lifting using
the symbolic execution monad. There is one function call that needs
a bit more attention: we need to prove that symbolic_map_get is indeed
a sound abstraction of the map lookup function. This can be again

270 gillian

trivially proven by noting that map access can be written

let σ(i) =
match σ with
| ∅ → None
| [i′ ↦→ σc] ⊎ σ′ →
if i = i′ then

ok σc

else
σ′(i)

This is lifted directly using our symbolic execution monad to obtain
symbolic_map_get, and, in turn, we get our result.

E.7 Freeable state model

module Freeable (S: Full_state_model) = struct

type Σ = S of S.Σ | ∅

type A = A of S.A | Free

let eval_action σ α v⃗ =
match α, v⃗ with
| Free, [] → (

match σ with
| ∅ → error (DoubleFree, σ)
| S σ → ok ((), ∅)

)
| A α, _ → (

match σ with
| ∅ → error (UseAfterFree, σ)
| S σ → (

let* (v, σ′) = S.eval_action σ α v⃗ in
ok (v, S σ′)

)
)

end

module Freeable (S: Compositional_state_model) = struct

type Σ = S of S.Σ | ∅
let 0 = S.0

type A = A of S.A | Free
let eval_action σ α v⃗ =

match α, v⃗ with
| Free, [] → (

match σ with
| ∅ → error (DoubleFree, σ)
| S σ →

if is_exclusively_owned σ then ok (∅, σ)
else miss (MissingResource, σ)

)
| A α, _ → (

match σ with
| ∅ → error (UseAfterFree, σ)
| S σ → (

let* (v, σ′) = S.eval_action σ α v⃗ in
ok (v, S σ′)

)
)

constructing state models 271

type ∆ = C of S.∆ | Freed

let produce σ δ v⃗i v⃗o =
match δ, v⃗i, v⃗o with
| C δ, v⃗i, v⃗o → (
match σ with
| ∅ → vanish
| S σ → (

let* σ′ = S.produce σ δ v⃗i v⃗o in
return (S σ′)

)
)
| Freed, [], [] → (

match σ with
| ∅ → vanish
| S σ →

if σ = S.0 then ok ∅
else vanish

)
| _ → vanish

let consume σ δ v⃗i =
match δ, v⃗i with
| C δ, v⃗i → (
match σ with
| ∅ → lfail (UseAfterFree, σ)
| S σ → (

let* (v⃗o, σ′) = S.consume σ δ v⃗i in
ok (v⃗o, S σ′)

)
)
| Freed, [] → (
match σ with
| ∅ → ok ([], ∅)
| _ → lfail (NotFreed, σ)

)
| _, _ → lfail (InvalidArguments, σ)

end

Lemma E.13 (Freeable state model: concrete soundness).
If S.Σ is a cancellative monoid, then:

S c∼
m

S =⇒ Freeable
c∼
m

Freeable

Proof.

Proposition: Frame addition Assume

(H1) σ.α(v⃗)⇝ o : (v, σ′)

(H2) σf # σ′

(H3) o ̸= Miss

To prove (G1) σ • σf .α(v⃗)⇝ o : (v, σ′ • σf)

We perform case analysis on the kind of action. If the action is inherited
from S, then the result is trivial, as the behavior is unchanged. We
consider the free action: (H4) α = free. There are two cases, either
σ = ∅ or σ ∈ S.Σ. Case σ = ∅:

(H5) σ = σ′∅

272 gillian

(H6) v⃗ = DoubleFree

From (H5), (H1) and the definition of composition, we know that (H7)
σf = 0. From there, the result is trivial, since σ • σf = σ.

Case σ = S σs:
Since the outcome is not Miss, it must be that

(H8) σ′ = ∅

Therefore, σf = 0 and the result is also trivially obtained.

Proposition: Frame subtractionAssume

(H1) σ • σf .α(v⃗)⇝ o : (v, σ′)

To prove

(G1)
∃o′, v′, σ′′. σ.α(v⃗)⇝ o′ : (v′, σ′′) ∧

(o′ ̸= Miss⇒ σ′ = σ′′ • σf ∧ o = o′ ∧ v = v′)

There are no vanishing transitions, so we know that there exists o′, v′, σ′′

such that
(H2) σ.α(v⃗)⇝ o′ : (v′, σ′′)

Now, assume that (H3) o′ ̸= Miss.
Again, the case of inherited actions is trivial, so we consider the case of
the free action. There are two cases, either σ • σf = ∅ or σ • σf ∈ S.Σ.

Case σ • σf = ∅:
In this case, since ∅ can only be obtained by compositing 0 with ∅, so
from (H3), we know that

(H4) σf = 0

(H5) σ = ∅

From there, the result is trivially obtained.

Case σ • σf ∈ S.Σ:
In this case, again, according to (H3), we know that

(H6) is_exclusively_owned σ

Therefore, since σ # σf , it must be that σf = 0, and the result is
trivially obtained.

Lemma E.14 (Freeable: producers and consumers).
If the producer and consumer of the codomain S are valid, then the
producer and consumer of the partial map state model Freeable(S) are
valid.

Proof. This property is trivial given the simplicity of composition: ∅ is
not disjoint from any state except 0.

constructing state models 273

module Freeable (S: Symbolic_state_model) = struct

type Σ = S of S.Σ | ∅
let 0 = S.0

type A = A of S.A | Free

let eval_action σ α v⃗ =
match α, v⃗ with
| Free, [] → (

match σ with
| ∅ → error (DoubleFree, σ)
| S σ →

if is_exclusively_owned σ then ok (∅, σ)
else miss (MissingResource, σ)

)
| A α, _ → (

match σ with
| ∅ → error (UseAfterFree, σ)
| S σ → (

let* (v, σ′) = S.eval_action σ α v⃗ in
ok (v, S σ′)

)
)

type ∆ = C of S.∆ | Freed

let produce σ δ v⃗i v⃗o =

match δ, v⃗i, v⃗o with

| C δ, v⃗i, v⃗o → (
match σ with
| ∅ → vanish
| S σ → (

let* σ′ = S.produce σ δ v⃗i v⃗o in
return (S σ′)

)
)
| Freed, [], [] → (
match σ with
| ∅ → vanish
| S σ →

if σ = S.0 then ok ∅
else vanish

)
| _ → vanish

let consume σ δ v⃗i =

match δ, v⃗i with

| C δ, v⃗i → (
match σ with
| ∅ → lfail (UseAfterFree, σ)
| S σ → (

let* (v⃗o, σ′) = S.consume σ δ v⃗i in

ok (v⃗o, S σ′)
)

)
| Freed, [] → (

match σ with
| ∅ → ok ([], ∅)
| _ → lfail (NotFreed, σ)

)
| _, _ → lfail (InvalidArguments, σ)

end

Lemma E.15 (Partial map state model: symbolic soundness).

274 gillian

S s∼
m

S =⇒ Freeable(S) s∼
m

Freeable(S)

Proof. The proof is free from the symbolic execution monad results.

E.8 Predicate state model transformer

The justification of soundness or the predicate state model is more
convoluted than that of other transformers, and requires an additional
intermediate proof step. We first define a concrete transformer Pred(S)
which we can be used in our framework, providing the same guarantees
as S itself. We then define the symbolic Pred(S) which is shown to be
symbolically sound with respect to Pred(S).

We provide the full definition of the concrete and symbolic predicate
state transformer:
module rec Pred (S) (P) = struct

type Σ = S.Σ× (P.names×Val list×Val list) list

type A =
| A of S.A
| Unfold of P.names
| Fold of P.names

let rec remove_pred ρ v⃗i p =
match p with
| [] → lfail (PredicateNotFound, p)
| (ρ′, v⃗′i, o)::p′ when ρ = ρ′ →

if v⃗i = v⃗′i then ok (v⃗o, p′)
else remove_pred ρ v⃗i p′

| (ρ′, _)::p’ when ρ ̸= ρ′ →
remove_pred ρ v⃗i p′

let unfold σ ρ v⃗i =
let (σs, p) = σ in
let v⃗o, p′ = remove_pred ρ v⃗i p in

let ⟨ρ⟩(x⃗i; x⃗o) ≜
⋁︁

P⃗ = P[ρ] in

let* P = P⃗ in (* For each definition *)
let θ = [xi ↦→ v⃗i, xo ↦→ v⃗o] in
(* This is recursive on the module itself *)

let* σ′ = produce_asrt (Pred S P) (σs, p′) θ P in
ok ((), σ′)

let rec first_success P⃗ θ σ =

match P⃗ with
| [] → Abort

| P :: P⃗
′ →

let consumption_result =

let* θ′, (σ′
s, p

′) = S.consume_asrt (Pred S P) σ θ P in
let v⃗i, v⃗o = θ′[x⃗i], θ′[x⃗o] in

ok ((), (σ′
s, (ρ, v⃗i, v⃗o) :: p))

in
match outcome_result with
| (Ok, _, _) →

(* If predicate was successfuly consumed we return this outcome)
outcome_result

| _ →
(* Otherwise we try the next predicate definition *)

first_success P⃗
′
θ σ

let fold σ ρ v⃗i =

constructing state models 275

let (σs, p) = σ in

let ⟨ρ⟩(x⃗i; x⃗o) ≜
⋁︁

P⃗ = P[ρ] in
let θ = [xi ↦→ v⃗i] in

first_success P⃗ θ σ

let eval_actions α σ v⃗ =
match α, v⃗ with
| Unfold ρ, v⃗i → unfold σ ρ v⃗i
| Fold ρ, v⃗i → fold σ v⃗i
| A αs →

let (σs, p) = σ in
let* (v⃗, σ′

s) =
with_abort_instead_of_miss

(S.eval_action αs σs v⃗)
in
ok (v⃗, (σ′

s, p))

let ∆ = | C of S.∆ | U of P.names

let produce σ δ v⃗i v⃗o =
let (σs, p) = σ in
match δ with
| C δs →

let* σ′
s = S.produce σs δs v⃗i v⃗o in

return (σ′
s, p)

| U ρ → return (σs, ⟨ρ⟩(v⃗i; v⃗o) :: p)

let consume δ (σ, p) v⃗i =
match δ with
| C δ′ →

let* (v⃗o, σ′) =
with_lfail_instead_of_miss

(σ.consume δ′ σ v⃗)
in
ok (v⃗o, (σ′, p))

| U ρ →
let* (v⃗o, p′) =

remove_pred ρ v⃗i p

in
ok (v⃗o, (σ, p′))

end

module rec Pred (S) (P) = struct

type Σ = S.Σ× (P.names×Val list×Val list) list

type A =

| A of S.A
| Unfold of P.names
| Fold of P.names

let rec remove_pred ρ v⃗i p =
match p with
| [] → Abort

| (ρ′, v⃗
′
i, v⃗o)::p′ when ρ = ρ′ →

if%sat v⃗i = v⃗
′
i then ok (v⃗o, p′)

else remove_pred ρ v⃗i p′

| (ρ′, _)::p’ when ρ ̸= ρ′ →
remove_pred ρ v⃗i p′

let unfold σ ρ v⃗i =
let (σs, p) = σ in

let v⃗o, p′ = remove_pred ρ v⃗i p in

let ⟨ρ⟩(x⃗i; x⃗o) ≜
⋁︁

P⃗ = P[ρ] in

276 gillian

let* P = P⃗ in (* For each definition *)

let θ = [xi ↦→ v⃗i, xo ↦→ v⃗o] in
(* This is recursive on the module itself *)

let* σ′ = produce_asrt (Pred S P) (σs, p′) θ P in
ok ((), σ′)

let rec first_success P⃗ θ σ =

match P⃗ with
| [] → Abort

| P :: P⃗
′ →

(* Only works if all outcomes are ok *)
try%sym

(* Recursive on the module itself *)

let* θ′, (σ′
s, p

′) = S.consume_asrt (Pred S P) σ θ P in

let v⃗i, v⃗o = θ′[x⃗i], θ′[x⃗o] in

ok ((), (σ′
s, (ρ, v⃗i, v⃗o) :: p))

with

| _ → first_success P⃗
′
θ σ

let fold σ ρ v⃗i =
let (σs, p) = σ in

let ⟨ρ⟩(x⃗i; x⃗o) ≜
⋁︁

P⃗ = P[ρ] in

let θ = [xi ↦→ v⃗i] in

first_success P⃗ θ σ

let eval_actions α σ v⃗ =
match α, v⃗ with
| Unfold ρ, v⃗i → unfold σ ρ v⃗i
| Fold ρ, v⃗i → fold σ v⃗i
| A αs →

let (σs, p) = σ in
let* (v⃗, σ′

s) =
with_abort_instead_of_miss

(S.eval_action αs σs v⃗)
in
ok (v⃗, (σ′

s, p))

let ∆ = | C of S.∆ | U of P.names

let produce σ δ v⃗i v⃗o =
let (σs, p) = σ in
match δ with
| C δs →

let* σ′
s = S.produce σs δs v⃗i v⃗o in

return (σ′
s, p)

| U ρ → return (σs, ⟨ρ⟩(v⃗i; v⃗o) :: p)

let consume δ (σ, p) v⃗i =
match δ with
| C δ′ →

let* (v⃗o, σ′) =
with_lfail_instead_of_miss

(σ.consume δ′ σ v⃗)
in
ok (v⃗o, (σ′, p))

| U ρ →
let* (v⃗o, p′) =
remove_pred ρ v⃗i p

in

ok (v⃗o, (σ, p′))

end

The fold function makes use of an intermediate function called
first_success which will attempt to consume each predicate in the list

constructing state models 277

of disjunctions, until one fully succeeds (it has on Ok outcomes). This
is performed using the try%sym ... with ... construct, which overrides
the try-with syntax of OCaml and instead checks that all results of the
symbolic execution monad within the block are Ok. If any of them are
not, the block is aborted and the next predicate is tried.

Definition E.16 (Concrete predicate state satisfiability).
We define the satisfiability relation σ |= ⟨ρ⟩(v⃗i; v⃗o) as:

σ |= ⟨ρ⟩(v⃗i; v⃗o)⇔ θ, σ |= Q1 ∨ · · · ∨ θ, σ |= Qn

where
(︃
⟨ρ⟩(x⃗i; x⃗o) ≜

n⋁︁
i=1

Qi

)︃
∈ P

and θ = [x⃗i ↦→ v⃗i, x⃗o ↦→ v⃗o]

We define a relation |=p between concrete states of S and states of
Pred(S,P) as:

σ |=p [] ⇔ σ = 0

σ |=p ⟨ρ⟩(v⃗i; v⃗o) :: p′ ⇔ ∃σ1, σ2. σ = σ1 • σ2

∧ σ1 |= ⟨ρ⟩(v⃗i(ε); v⃗o(ε))
∧ ε, σ2 |=p p

′

ε, σ |=p (σs, p) ⇔ ∃σp. σ = σs • σb • σp

∧ ε, σb |= σ

∧ ε, σp |=p p

Lemma E.17 (Concrete predicate abstraction).
The concrete predicate state model is an over-approximate abstraction
over its input. More formally, let S be a concrete compositional state
model, and P be a set of user-defined predicates that make use of the
core predicates of S. Then the following properties hold, where SP =
Pred(S,P):

σ.α(v⃗)
S
⇝ o : (v, σ′) ∧ σ |=p (σs, p)

=⇒ (σs, p).α(v⃗)
SP⇝ o′ : (v′, (σ′s, p

′))

∧(o′ ̸= Miss⇒ (o = o′ ∧ v = v′ ∧ σ′ |=p (σ′s, p
′)))

(Predicate action soundness)

σ |= (σs, p) ∧ (σs, p).unfoldρ(v⃗)
SP⇝ Ok : (v, (σ′s, p

′))

=⇒ σ |=p (σ′s, p
′)

(Unfold abstracts no-op)

σ |= (σs, p) ∧ (σs, p).foldρ(v⃗)
SP⇝ Ok : (v, (σ′s, p

′))

=⇒ σ |=p (σ′s, p
′)

(Fold abstracts no-op)

(σs, p).consδ(v⃗i)
SP→ o : (v⃗o, (σ

′
s, p
′)) ∧ σ |=p (σs, p)

=⇒ ∃σ′, σδ. σ′ |= (σ′s, p
′) ∧ σ = σ′ • σδ ∧ σδ |= ⟨δ⟩(v⃗i; v⃗o)

(Predicate consumer validity)

σ |= (σs, p) ∧ σδ |= ⟨δ⟩(v⃗i; v⃗o) ∧ σ # σδ

=⇒ ∃(σ′s, p′). (σs, p).prodδ(v⃗i, v⃗o)
SP⇝ (σ′s, p

′) ∧ σ • σδ |= (σ′s, p
′)

(Predicate producer validity)

278 gillian

Proof.

Proposition: Predicate action soundness
Actions that are inherited from S satisfy Predicate action soundness
trivially, by application of Frame subtraction. Specifically, if there is a
transition from σ to σ′ with action α and σ |=p (σs, p), then σ = σs •σp

where σp |=p p. Using frame subtraction, we can learn that a transition
exists from σs, and either too much information has been removed, in
which case a Miss occurs, or the exact same transition exists to σ′s
where σ′ = σ′s • σp |= (σ′s, p).

Proposition: Unfold abstracts no-op
Unfold is only successful if it found the same predicate in the state, in
which case the predicate is removed and its definitions are produced
in the state. By definition of |=p, if σ |=p (σs, p), then σ = σs • σp

where σp |=p p. If a predicate ⟨ρ⟩(v⃗i; v⃗o) is found, then it is removed
from the state, and we have a "frame state" σs, pf where pf is p with
the predicate removed. Therefore, again by definition of |=p, there
is some σf = σs • σf

p such that σf
p |=p pf , and σ = σf • σρ where

σup |= ⟨ρ⟩(v⃗i; v⃗o). Satisfying ⟨ρ⟩(v⃗i; v⃗o) is equivalent to satisfying one
of its definition, so using Predicate producer validity, we obtain the
result that σ |=p (σ′s, p

′), and unfold is a no-op.

Proposition: Fold abstracts no-op
This is similar to the above property, but in reverse. The proof leverages
Predicate consumer validity, instead of Predicate producer validity.

Proposition: Predicate consumer validity
There are two kinds of core predicates. User defined predicates are
simply removed from the list of predicates on match, and if successful,
by definition of |=p, guarantee that the property holds. On the other
hand, core predicates inherited from S are consumed only from σs, and
the property is obtained by applying validity of the consumer for S.

Proposition: Predicate producer validity
The proof is similar to the above. User defined predicates are added
to the list of predicate and the result is trivially obtained through
definition of |=p, while core predicates inherited from S are produced
only in σs, and the result is obtained by applying the validity of the
producer for S.

We now show that specification calls in the concrete predicate state
model are sound with respect to the concrete state model without
predicates. This result could be generalised to any "abstraction" state
which preserves the above properties.

Lemma E.18 (Soundness of specification calls in concrete abstraction).
Let γ be a program and S = { P } e { Ok : r. QOk }{ Err : r. QErr }

constructing state models 279

be a separation logic quadruple. Then:

γ |= S ∧ γ ⊢ σ, e ⇓Sθ o : (v, σ′) ∧ σ |=p (σs, p) =⇒
(∃o′, v′, σ′, p′.(σs, p).specS(θ)

SP⇝ o′ : (v′, (σ′, p′))

∧(o′ /∈ {Miss, Lfail} ⇒ (o′ = o′ ∧ v′ = v ∧ σ′ |=p (σ′s, p
′))))

(Specification call soundness with predicates)

Proof. This proof is almost identical to that of Theorem 5.13, but
it is slightly more general, and requires the inderection through |=p.
However, this indirection is trivial, and we do not repeat the full proof
here.

The results from Lemma E.18, together with Predicate action sound-
ness naturally lift to the whole specification semantics, ensuring OX-
soundness of the analysis performed using a predicate state model. The
final piece of the puzzle is the soundness of the symbolic predicate state
model with respect to the concrete predicate state model.

Lemma E.19 (Predicate state model: soundness).

S s∼
m

S =⇒ Pred(S,P)
s∼
m

Pred(S,P)

Proof. The proof is straightforward by lifting through the symbolic
execution monad.

Appendix F

Some Gillian-Rust tactics

This appendix presents two kinds of tactics that are proposed by the
Gilsonite API and that we do not detail in the main body of this
presentation to avoid clutter.

F.1 Freezing existential variables

When performing borrow extraction in functions such as LinkedList::first_mut,
one needs to freeze existential variables introduced within the mutable
borrow. The corresponding rule, Freezing existential variables is given in
Jung’s thesis1: 1 Jung, “Understanding and evolving

the Rust programming language”,
2020 [Jun20]LftL-Bor-Exists

&κ(∃x. P) ≡−∗ ∃x.&κP

For instance, consider the borrow &κ(∃y, z. x ↦→ y ∗ y ↦→ z). If
this borrow corresponds to a mutable reference, one could provide a
sub-borrow &κ(y ↦→ z). However, it is not possible to do so without
saying that y cannot change anymore. For this reason, one must start
by first freezing y, obtaining &κ(∃z. x ↦→ y∗y ↦→ z). Then, one can split
the borrow in two, thereby obtaining ∃y. &κ(x ↦→ y) ∗&κ(∃z. y ↦→ z),
before discarding the first part.

The Gillian-Rust API provides the following macro to instantiate
this rule for a given borrow and a given set of existentially quantified
variables:

#[with_freeze_lemma(
lemma_name = freeze_y,
predicate_name = some_borrow_frozen,
frozen_variables = [y]

)]
#[borrow]
fn some_borrow(x: *mut *mut i32) {

gilsonite!(exists y: *mut i32, z: i32. x → y * y → z)
}

This #[with_freeze_lemma(...)] annotation generates two new items: a
borrow where y is an input parameter instead of an existential variable;
and a lemma that transforms the original borrow into the new one:

#[borrow]
fn some_borrow_frozen(

x: *mut *mut i32,
y: *mut i32

) {
gilsonite!(exists z: i32. x → y

* y → z)
}

#[trusted]
#[lemma]
#[specification(

requires { some_borrow(x) },
exists y: *mut i32.
ensures { some_borrow_frozen(x, y) }

)]
fn freeze_y(x: *mut *mut i32);

282 gillian

F.2 Borrow extraction with prophecy variables

Recall that, when proving type safety, the borrow-extract rule is as
follows:

Borrow-Extract
persistent(F) F ∗ P ⇒ Q ∗ (Q −∗ P)

F ∗ [κ]q ∗&
κP ≡−∗ &κQ ∗ [κ]q

We have proven this rule in Iris RustBelt development. Gillian-Rust
provides a macro to instantiate a trusted lemma corresponding to the
update in the conclusion of the rule, together with a proof obligation
corresponding to the premise.

The premise says that, in the context of a persistent assertion F ,
assertion Q can be derived from P , together with a wand Q −∗ P ,
which ensures that, should the invariant Q be restored, the assertion P
can be derived again. While this rule is sufficient to prove type safety
of functions that perform borrow extraction, it is not enough to prove
their functional correctness.

To prove functional correctness, one needs, in addition, to describe
the relationship between the value contained in the original borrow, and
that contained in the extracted borrow. This is done by introducing
a function f(a, b), where a is the value of the original borrow, and b

is the value of the extracted borrow. The corresponding rule is the
following:

Borrow-Extract-Proph
persistent(F) f(a,−) injective

F ∗ P (a)⇒ Q(b) ∗ a = f(a, b) ∗ (Q(b′) −∗ P (f(a, b′)))
F ∗ [κ]q ∗&

κ(∃a. P (a) ∗ PCx(a)) ∗VOx(a)

≡−∗ &κ(∃b. Q(b) ∗ PCy(b)) ∗VOy(b) ∗ L↑x = f(a, ↑y)M ∗ La = f(a, b)M ∗ [κ]q

Let us walk through the rule step by step. The first premise is the
same as in the previous rule. It allows us to perform extraction within
the context of a persistent assertion F . For instance, when extracting
the first node of a linked list, F is the pure assertion that states that
the list is not empty.

The second premise requires that the function λb. f(a, b) is injective.
For instance, again in the case of extracting a borrow to the first element
of a linked list, the function f connects the representation of the list
to the representation of the first element: f(a, b) = b :: (tail a). It is
easy to check that this function is injective.

The final premise is a generalisation of the premise of Borrow-
Extract. It states that, if the invariant P holds for a value a, then
the invariant Q holds for a value b such that a = f(a, b), and for any
b′, if Q(b′) holds, then it is possible to recover the invariant P for the
value f(a, b′). In the case of the linked list, this states that, given the
entire linked list with representation a, one can extract a pointer to
its first element with representation b, such that the entire list a is
the tail of a with b prepended. In addition, if the pointer to the first
element is returned with representation b′, then the invariant for the
entire linked-list is recovered with representation f(a, b′), that is, the
tail of a with b′ prepended.

some gillian-rust tactics 283

The conclusion is an update which requires the context F to hold,
together with a lifetime token [κ]q, and resource that has the same
shape as the ownership predicate of a mutable reference, with invariant
P , prophecy variable x and representation a. Such resource is usually
either directly the ownership predicate of a mutable reference or a
predicate obtained by freezing variable in the full borrow it contains.
The update does not modify the lifetime token, and produces a new
mutable-reference-like resource with invariant Q, prophecy variable y
and representation b. In addition, it partially resolves the prophecy
variable x, stating that the future value of x (at the time when the
borrow expires), denoted by ↑ x, shall be f(a, ↑ y), where ↑ y is the
future value of y. Finally, it states the the current representation a is
equal to f(a, b).

In the case of the linked list, the observations respectively state that
the current value of the entire linked list is obtained by prepending
the current value of the obtained pointer to the first element to the
tail of the current list; and that the future value of the entire list is
obtained by prepending the future value of the pointer to the first
element to the tail of the current list. This is true since, when using
the function first_mut, nothing other than the first element of the list
can be modified until the borrow expires, as enforced by the borrow
checker.

Similarly to the case without prophecies, Gillian-Rust generates
the obligation corresponding to the separation between the extracted
resource and the magic wand. In addition, it generates a second
obligation for the injectivity of the function f(a,−), which is usually
trivially discharged.

	Introduction
	Overview and contributions
	Publications
	Collaborations

	I The Gillian framework
	A unified framework
	Symbolic execution
	Compositionality
	Parametricity
	Incorrectness reasoning
	A unified, modular, streamlined formalism

	Overview
	Using Gillian
	Compositional symbolic execution à la carte
	Soundness
	Correctness and Incorrectness

	Compositionality and parametricity
	Languages and concrete semantics
	Partial commutative monoids
	Concrete compositional semantics
	SIGIL: a parametric intermediate language
	Examples of state models

	Parametric Assertion Language and Specification Execution
	Parametric assertion language
	Producers
	Consumers and Matching
	Specification semantics
	Examples

	Symbolic execution
	The symbolic realm
	Path conditions
	Symbolic abstractions
	Approximate solvers
	Symbolic execution processes
	Interlude: implementation and optimisation
	Parametric symbolic execution for SIGIL
	Example symbolic state models

	Analyses
	OX and UX whole-program symbolic testing
	Compositional verification
	Automatic UX specification synthesis

	Constructing state models
	Product of state models
	Exclusive ownership
	Agreement state model
	Fractional state model
	Partial finite maps
	Freeable state model
	The predicate symbolic transformer
	The mutable store, and where it goes wrong
	Implementation and code reuse

	Applications: Wisl and JavaScript
	Wisl: While language for separation logic
	Gillian-JS

	Related work
	Compositional symbolic execution tools for verification
	Bi-abduction tools
	Parametric frameworks for analysis
	Combining UX and OX analysis
	Monadic symbolic execution

	II Gillian-C
	Gillian-C: What and why?
	The Gillian-C Infrastructure
	Whole-program symbolic testing
	Compositional verification
	Specification synthesis using bi-abduction

	The Gillian-C symbolic state model
	The CompCert memory model
	Symbolic block trees: overview
	Symbolic block trees: implementation
	Symbolic block trees: assertion language
	Symbolic block trees: fixes for bi-abduction

	The Gillian-C front-end
	Compiling C code
	Compiling C assertions

	Evaluation
	Collections-C
	The AWS Encryption Header case study
	Limitations

	Related work
	Whole-program symbolic testing
	Compositional verification using SL
	Infer:Pulse

	III Gillian-Rust
	A challenge
	The Gillian-Rust infrastructure
	A hybrid approach: Creusot + Gillian-Rust
	Example usage of Gillian-Rust

	Reasoning about the real Rust heap
	Layout-independent memory addresses
	Objects in the Rust symbolic heap
	Specifying the Rust heap: the typed points-to core predicate

	Automating reasoning about mutable borrows
	Modelling lifetimes: core predicates
	Modelling full borrows: guarded predicates
	Proving safety of borrow extraction

	Functional correctness and prophetic reasoning
	Representations, parametric prophecies, and observations
	Key idea: parametric prophecies and symbolic execution
	Value observers and prophecy controllers

	Anatomy of a hybrid proof : Merge Sort
	Writing a hybrid proof
	Compilation of Creusot specifications
	Gillian-Rust in action: [language=Rust]LinkedList::pushfront

	Evaluation
	EvenInt
	LinkedList
	MiniVec and Vec
	Hybrid Verification

	Limitations and Future work
	Unimplemented features
	Meta-theory simplifications
	Unexplored topics

	Related work

	
	Future work

	Appendix
	Compositionality and parametricity
	Parametric Assertion Language
	Correctness of the parametric producer
	Correctness of the parametric consumer
	Soundness of specification execution
	Soundness of the specification semantics

	Symbolic Execution
	Monad laws for the symbolic execution monad
	Composition of symbolic processes

	Analyses
	Compositional verification
	Specification inference procedure

	Constructing State Models
	Product of state models
	State model of values
	Exclusive ownership
	Agreement state model
	Fractional state model
	Partial maps
	Freeable state model
	Predicate state model transformer

	Some Gillian-Rust tactics
	Freezing existential variables
	Borrow extraction with prophecy variables

