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Multiple successful compositional symbolic execution (CSE) tools and platforms exploit separation logic (SL) for

compositional verification and/or incorrectness separation logic (ISL) for compositional bug-finding, including

VeriFast, Viper, Gillian, CN, and Infer-Pulse. Previous work on the Gillian platform, the only CSE platform

that is parametric on the memory model, meaning that it can be instantiated to different memory models,

suggests that the ability to use custom memory models allows for more flexibility in supporting analysis of a

wide range of programming languages, for implementing custom automation, and for improving performance.

However, the literature lacks a satisfactory formal foundation for memory-model-parametric CSE platforms.

In this paper, inspired by Gillian, we provide a new formal foundation for memory-model-parametric CSE

platforms. Our foundation advances the state of the art in four ways. First, we mechanise our foundation (in

the interactive theorem prover Rocq). Second, we validate our foundation by instantiating it to a broad range

of memory models, including models for C and CHERI. Third, whereas previous memory-model-parametric

work has only covered SL analyses, we cover both SL and ISL analyses. Fourth, our foundation is based on

standard definitions of SL and ISL (including definitions of function specification validity, to ensure sound

interoperation with other tools and platforms also based on standard definitions).
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1 Introduction
Multiple successful analysis tools and platforms provide compositional verification and/or composi-

tional bug-finding for heap-manipulating programs, including VeriFast [21], Viper [38], Gillian [19,

32, 35], CN [45], Infer-Pulse [26], by animating their automated and semi-automated reasoning

using compositional symbolic execution (CSE) grounded on ideas from separation logic (SL) [40, 49]
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and/or incorrectness separation logic (ISL) [46] (usually bottoming out in a call to an underlying

SMT solver, such as Z3 [14]). In this case, compositional (or functionally compositional) reasoning

means that it is scalable in that the analysis works on functions in isolation, at any point in the

codebase, and then records the results in simple function specifications that can be used in broader

calling contexts. SL provides a good grounding for sound verification (proving the absence of bugs)

through compositional over-approximate (OX) reasoning; ISL provides a good grounding for sound

bug-finding (proving the presence of bugs) through compositional under-approximate (UX) reason-
ing. Important examples of CSE analyses based on the two logics include OX function-specification

verification (implemented in, e.g., VeriFast, Viper, Gillian, and CN) and UX true bug-finding based

on bi-abduction [26] (implemented in, e.g., Infer-Pulse and Gillian).

A key challenge with the design of CSE platforms that aim for wide applicability is to manage the

diverse range of memory models employed across different applications.
1
This need for different

memory models arises from multiple sources. First, of course, different programming languages

are defined over different language memory models. Second, different analyses are defined over

different types of memory ghost state, e.g., ghost state for different kinds of ownership disciplines,

such as exclusive ownership vs. fractional ownership, or negative-information ghost state used

in UX analyses to ensure UX compositionality. Third, even choosing the programming language

and the analysis still does not determine the memory model: there is no one-size-fits-all memory

models because the different axes of the memory-model design space are often-times in antagonistic

relationship with each other: e.g., the choice of what part of the language to be analysed, accuracy

and abstraction level of the model, implementation effort of the model, performance of the model,

and automation/annotation burden associated with the analysis of themodel.We cannot move freely

along different axes in the design space and therefore must solve a difficult trade-off problem when

selecting a memory model to use: e.g., a complex memory model might give better performance

than a simple memory model but will require more implementation effort.

The analysis platform Gillian stands out as the only CSE platform that faces this memory-model

challenge head-on. Gillian is the only CSE platform that is parametric on the memory model,

meaning that no memory model is hard-coded into the platform and instead the platform can be

instantiated to different memory models, depending on which model has the best position in the

model design trade-off space for a situation at hand. All other CSE platforms aremonomorphic on the
memory model in that they only support one fixed memory model that has been hard-coded into the

platform. It is therefore awkward, or impossible, to use the memory model that is most appropriate

for a situation at hand since it must be encoded into the fixed memory model of the platform.

Literature gap. No previous work provides a satisfactory formal foundation for CSE platforms

that are parametric on the memory model; in particular, a formal foundation for Gillian’s approach

to memory-model parametricity is missing. There was some initial work on the foundations of

Gillian [19, 35], which outlined mathematical definitions and gave a sketch of a soundness proof

for parts of the CSE engine of Gillian. This work, however, suffers from four weaknesses:

(1) it was not mechanised;

(2) it did not prove that any of their memory-model instances were sound, and thus did not

validate their definitions and conjectures;

(3) it only covered SL-based analyses, not ISL-based analyses;

(4) it did not use standard SL definitions, such as the definition of function specification validity,

thus making the engine awkward to interoperate with other analysis tools and platforms.

1
To avoid confusion: whereas some authors reserve the term memory model for weak-memory concurrency, we use the

term broadly in this work (the many different ways of representing, updating, and analysing the heap).
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Table 1. Summary of our memory-model instances. The columns “OX” and “UX” specify whether the model is
OX sound and/or UX sound; “Rocq kLoc” specifies the size of the Rocq proof script file for the model; “Origin”
specifies which CSE platforms have implemented the model. The star (“*”) in the Rocq column for the OOP
model specifies that we did not mechanise the model because of its large overlap with the block-offset model,
and the double star (“**”) for the CHERI model specifies that the mechanised proof only covers OX soundness
(UX soundness is left for future work because of the size of the task).

Memory-model name § OX UX Rocq kLoC Origin

Linear model (running example in paper) 6.1 ✓ ✓ 1

Linear model with unique-match branching 6.1 ✓ ✓ 1

Linear model with cut branching 6.1 ✓ ≈ 0.5

Linear model without negative information 6.1 ✓ ≈ 0.5

Fractional ownership model 6.2 ✓ ✓ 2

Block-offset model for C 6.3 ✓ ✓ 4 Gillian

Model for OOP languages (e.g., JavaScript) 6.4 ✓ ✓ 0* Gillian

CHERI-assembly model 6.5 ✓ ✓ 19** New model

VeriFast-and-Viper-inspired model for C 6.6 ✓ ≈ 0.5 VeriFast and Viper

Other previous work on the foundations of CSE have only covered tools and platforms that are

monomorphic on the memory model [13, 22, 32, 58]. (We discuss related work in more detail in §7.)

Contribution. In this paper, we contribute a new CSE theory that addresses all four weaknesses in

the current formal foundations of CSE platforms that are parametric on the memory model. Our new

CSE theory is inspired by the design of Gillian but is independent of its particular implementation;

we have designed our theory to be a CSE analogue of separation logics that are parametric on the

memory model, such as abstract separation logic [11] and subsequent generic/modular/parametric

separation-logic frameworks like the views framework [15, 47] and, perhaps the most well-known

example, the Iris framework [24].

An important strength of our CSE theory is that it is remarkably simple; in fact, its definitions

and metatheory are not much more complex than existing monomorphic CSE theories. This suggests
that, while there are clear advantages, there are no clear disadvantages in making CSE platforms
parametric on the memory model.

Technically, our new CSE theory, which we have mechanised in Rocq [50], consists of:

• a definition of “memorymodel” in the CSE setting, including, two sets of OX andUX soundness

requirements on memory models;

• a formal semantics for a CSE engine that is parametric on the memory model;

• two soundness results for the engine: if a memory model satisfies our OX/UX soundness

requirements, then the engine is OX/UX sound when instantiated with the memory model.

To validate our CSE theory and show that it has broadly applicability, we instantiate our theory

to a broad collection of memory models ranging from models for low-level languages like assembly

and C to high-level languages like JavaScript, as summarised in Tab. 1. In more detail: in §6.1 and

§6.2, we cover the standard models used in theoretical investigations into SL and ISL, which we

call linear memory models. In §6.1, we show that multiple variants of these linear memory models

fit into our theory, including OX-and-UX sound models, OX-only models, and UX-only models.

In §6.2, to show that different ownership disciplines fit into our theory, we instantiate our theory

with a linear memory model implementing fractional ownership rather than standard exclusive

ownership. In §6.3, we shift the discussion towards more realistic memory models, starting of the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 373. Publication date: October 2025.



373:4 A. Lööw, S. H. Park, D. Nantes-Sobrinho, S.-É. Ayoun, O. Sjöstedt, and P. Gardner

discussion with a memory model inspired by the memory model of the CompCert compiler. The

memory model is implemented in Gillian and has been used in Gillian-based teaching. In §6.4,

to show that memory models for high-level languages like object-oriented languages also fit our

theory, we discuss the JavaScript memory model implemented in Gillian. In §6.5, we discuss a new

memory model for CHERI, which is the largest model we have mechanised. As this model is new

and, hence, has not been implemented in any CSE platform, the model shows that new models can

be designed using only our CSE theory as guidance. Lastly, in §6.6, to show broad CSE platform

coverage, we discuss the hard-coded memory model of VeriFast and Viper.

Our main technical contributions can be summarised as follows:

• Weprovide the first foundation of CSE platforms that are parametric on thememorymodel (§5)

that: (1) is mechanised, (2) is validated, (3) covers both SL- and ISL-based analyses, and

(4) is interoperable.

• We demonstrate that two important analyses can be soundly hosted on top of our memory-

model-parametric CSE engine (§5): namely, OX function-specification verification; and UX

true bug-finding based on bi-abduction.

• We discuss instantiations of our CSE theory (§6), as summarised in Tab. 1.

• We make available all source code and proofs of our Rocq mechanisation of our CSE theory

and its instantiations in the artefact of this paper (see our data-availability statement).

Scope limitations and caveats. For this paper, we only consider sequential memory models not

concurrent memory models. We, however, believe our work is a useful starting point for future

work on symbolic execution of different concurrent memory models. Additionally, we work with a

simple demonstrator programming language, specifically, a memory-model-parametric variant of

a standard (sequential) imperative language. In other words, to focus the discussion on our core

contribution, which is memory-model parametricity, we do not vary other parts of the language.

2 Overview
In this section, we highlight the main takeaways of our new CSE theory. To be able to do so, we

give a compressed overview of our theory. The core contribution of our theory is that it is parametric

on a set of parameters that factors out its memory-model dependent part; the focus in this section

is therefore these parameters.

2.1 Background: Monomorphic CSE Theory
Before introducing our new memory-model-parametric CSE theory, we give a summary of tra-

ditional memory-model-monomorphic CSE theory. The judgements we use in the summary are

simplified judgements from our theory.

Engine architecture. In this paper, we work specifically with CSE engines implementing the

consume-produce engine architecture. This is the architecture implemented by Gillian and other

similar modern CSE engines like VeriFast and Viper. In this architecture, two operations called

consume and produce are used to implement the execution of commands/constructs based on

assertions (separation-logic points-to assertions, etc.), which are the commands/constructs making

the engine a compositional engine, such as using function specifications to reason about function

calls. In short, the consume operation takes as input an assertion and removes (“consumes”) the

corresponding symbolic state from the engine’s current symbolic state and the produce operation
also takes as input an assertion but instead adds (“produces”) the corresponding symbolic state to

the current symbolic state. For example, to execute a function call using a function specification,

the precondition of the specification is first consumed and its postcondition is then produced.
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Judgements. Assuming we work with (a monomorphised version of) our demonstrator language,

a monomorphic CSE theory needs to specify at least the following judgements:

• 𝜎,C ⇓ 𝜎 ′
– judgement for the concrete semantics of the language, where C denotes a language

command, 𝜎 is a concrete input state, and 𝜎 ′
is a concrete output state.

• 𝜎 |= 𝐴 – judgement for the satisfaction relation for assertions (used to, e.g., define the

semantics of function specifications).

• 𝜎̂,C ⇓ 𝜎̂ ′
– judgement for the CSE engine, i.e., the symbolic semantics of the language, where

𝜎̂ and 𝜎̂ ′
are symbolic states.

• 𝜎 |= 𝜎̂ – judgement for the satisfaction relation for symbolic states, i.e., the relation between

concrete and symbolic states.

The two important operations consume and produce are part of the definition of the symbolic

engine, i.e., 𝜎̂,C ⇓ 𝜎̂ ′
.

Definition of soundness. There are two standard soundness statements that relate the concrete and

symbolic execution judgements: OX soundness and UX soundness [3] (although different papers use

different terminology). OX soundness is the following relation between the two types of execution:

𝜎,C ⇓ 𝜎 ′ ∧ 𝜎 |= 𝜎̂ ⇒ ∃𝜎̂ ′, 𝜎̂,C ⇓ 𝜎̂ ′ ∧ 𝜎 ′ |= 𝜎̂ ′ .

Intuitively, the relation enforces that all states reachable by concrete execution are reachable by sym-

bolic execution, i.e., symbolic reachability overapproximates concrete reachability. UX soundness

enforces the opposite relation, where, note, the universal quantification is over the final states:

𝜎̂,C ⇓ 𝜎̂ ′ ∧ 𝜎 ′ |= 𝜎̂ ′ ⇒ ∃𝜎, 𝜎,C ⇓ 𝜎 ′ ∧ 𝜎 |= 𝜎̂ .

In more analysis application-oriented terms: OX soundness is a good foundation for verification

and UX soundness is a good foundation for bug-finding. E.g., for verification: it follows from OX

soundness that if we have proved that a behaviour (such as a bug) is unreachable using symbolic

execution, then the behaviour is also unreachable by concrete execution.

2.2 The Step to Parametric CSE Theory
We now discuss how our CSE theory parameterises the judgements and soundness statements

introduced above. We differentiate between two types of parameters, which we also refer to as

instance data: instance definitions (abbreviation: “IDefs”) and instance properties (abbreviation:
“IProps”). Additionally, we group the parameters into the following four abstractions:

(1) concrete memory model (CMM) – the parameters of 𝜎,C ⇓ 𝜎 ′
(concrete semantics);

(2) resource model (RM) – the parameters of 𝜎 |= 𝐴 (satisfaction relation for assertions);

(3) symbolic memory model (SMM) – the parameters of 𝜎̂,C ⇓ 𝜎̂ ′
(symbolic semantics/engine)

and 𝜎 |= 𝜎̂ (satisfaction relation for symbolic states);

(4) OX and UX soundness relations (RELs) between CMMs, RMs, and SMMs – the parameters of

the soundness proofs of the engine.

Fig. 1 depicts the dependency structure of the four abstractions (blue boxes) and the engine

definition and its soundness proofs (grey boxes). All IDefs. and IProps. parameters are summarised,

respectively, in Tab. 2 and Tab. 3. We now introduce the parameters in more detail.

Concrete memory model and resource model. Because a CSE engine and a program logic for the

same language have the same trusted computing base, the parameters of the concrete language and

the assertion language of our CSE theory are the same as for comparable memory-model-parametric

separation logics such as abstract separation logic [11] (we are here speaking in terms of big-picture
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CMM

RM

SMM

CSE engineOX REL

CSE engine

OX sound

UX REL

CSE engine

UX sound

Fig. 1. Dependency structure of our theory.

Table 2. Summary of required IDefs.

# Abs. Description

1 CMM Memory data type, empty memory, and

composition operator

2 CMM Concrete semantics of memory actions

3 RM Resource satisfaction relation

4 SMM Memory data type and empty memory

5 SMM Memory satisfaction relation

6 SMM Symbolic semantics of memory actions

7 SMM Semantics of consumeRes and produceRes

Table 3. Summary of required IProps., where the “Deps.” column specifies the IDefs. dependencies.

# Abs. Deps. Description

1 CMM 1 Memory forms a partial commutative monoid (PCM)

2 CMM 1 and 2 Memory actions satisfy OX/UX frame properties

3 REL All except 3 and 7 OX/UX soundness of symbolic memory actions

4 REL All except 2 and 6 OX/UX soundness of consumeRes and produceRes

ideas, of course parameter details differ between different program logics). Therefore, we discuss

the two abstractions concrete memory model and resource model together.

A concrete memory model, i.e., the parameters of 𝜎,C ⇓ 𝜎 ′
(concrete language), specifies: the

data type of memory (IDef. 1) and the memory actions and their semantics (IDef. 2). Examples

of common memory actions include memory read, memory write, allocation, etc. Analogous to

the setup in program logics, we require that the data type of memory comes with a composition

operator that forms a PCM together with the data type (IProp. 1) such that we can build the standard

separation-logic infrastructure on top of the language. Additionally, to ensure that the concrete

language satisfies the standard separation-logic frame properties, we require that the memory

actions satisfy frame properties (IProp. 2) that we have derived from the standard properties.

A resource model, i.e., the parameters of 𝜎 |= 𝐴 (satisfaction relation for assertions), specifies:

the resource assertions for the memory-model instance and their satisfaction relation (IDef. 3).
2

These resource assertions are the assertions that differ between memory models, the remaining

assertion language is fixed. E.g., one common type of resource assertion is points-to assertions for

heap cells (usually denoted E1 ↦→ E2). An alternative approach, followed by the original work on

Gillian [35], is to define the meaning of assertions in terms of consume and produce instead of a

traditional satisfaction relation. This approach requires less instance data but makes the theory

awkward to connect to other formalisms since the meaning of assertions is nonstandard.

Takeaway. Concrete memory models and resource models should look familiar; they are

analogous to instance data also required by memory-model-parametric separation logics.

2
Our assertions are deeply embedded because our CSE engine must be able to pattern match over their structure. Note that

some presentations of memory-model-parametric separation logics (e.g., the abstract separation logic paper [11]) shallowly

embed their assertions, i.e., do not include an explicit satisfaction relation and instead define assertions to be sets of state.
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Symbolic memory model. A symbolic memory model, i.e., the parameters of 𝜎̂,C ⇓ 𝜎̂ ′
(symbolic

semantics/engine), specifies: the data type of symbolic memory (IDef. 4) and the satisfaction relation

for symbolic memory (IDef. 5); the symbolic semantics of memory actions over the memory (IDef. 6);

additionally, the consume and produce operations of the engine are parametrised by consumeRes
and produceRes operations for the resource assertions of the memory model (IDef. 7).

Note that, in contrast to concrete memories, we do not require that symbolic memories form

PCMs or satisfy any frame properties. This is unlike the original work on Gillian [35], which defined

concrete and symbolic memory models uniformly and therefore required the same instance data

for both, i.e., required more instance data than us. Our work shows that the IDefs. and IProps. of a

parametric CSE theory can be stated such that symbolic PCM and frame data is not needed for

either the definition of the theory’s engine or for its soundness proofs; instead, in the theory, all

PCM reasoning and frame reasoning can be carried out at the concrete level.

Takeaway. Symbolic memory models and concrete memory models have different parameters

and should therefore not be treated uniformly.

OX and UX soundness relations. Our soundness relations, i.e., the parameters of the soundness

proofs, tie together concrete memory models, resource models, and symbolic memory models.

The OX soundness of our CSE engine (Thm. 5.2) follows from a series of OX IProps., while UX

soundness (Thm. 5.3) follows from a series of UX IProps. Specifically, we define what it means for

symbolic memory actions (IProp. 3) and the consumeRes and produceRes operations (IProp. 4) to be

OX sound and require this as instance data. See again Tab. 3, which specifies which IDefs. each

IProp. ties together. We give analogous IProps. for UX soundness.

Takeaway. From the Gillian implementation we know that the definition of a CSE engine can be

built on top of a symbolic memory model, this paper shows that the same is true of the soundness
proof of the engine; i.e., the soundness proof of the engine can be built on top of the soundness

requirements for symbolic memory models as we define them in this paper (i.e., our IProps.).

Takeaway. Additionally, our work shows that it is possible to make a clear separation between

OX and UX soundness requirements and lift the two to the full engine independently of each

other. In other words, OX soundness and UX soundness are independent of each other.

2.3 Structure of Rest of Paper
The rest of the paper is structured as follows. In §3 to §5, we formally and incrementally present

the parameters of our CSE theory. Throughout this presentation, we use a simple linear memory

model as a running instantiation example. In §6, having introduced the parameters, we discuss

other examples of memory models that fit our CSE theory.

3 Programming Language
We introduce the syntax and concrete semantics of our demonstrator programming language, which

is parametrised by a concrete memory model, specifically, concrete memory data type (IDef. 1),

memory actions (IDef. 2), and their associated IProps.

Syntax. The syntax of the language is standard except that it is equipped with a memory-action
command ®x := 𝛼 (®E), where 𝛼 ∈ Str, which is given a semantics using the memory-model IDefs.
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introduced below. The full definition of the syntax is as follows:

𝑣 ∈ Val ::= null | 𝑏 ∈ Bool | 𝑛 ∈ Nat | 𝑞 ∈ Rat+ | 𝑠 ∈ Str | [®𝑣] x, y, z, . . . ∈ PVar
E ∈ PExp ::= 𝑣 | x | ¬E | E = E | E ∧ E | E + E | E − E | E / E | E < E | . . .
C ∈ Cmd ::= skip | x := E | if (E) C else C | C;C | y := 𝑓 (®E) | ®x := 𝛼 (®E)

where the vector notation (e.g. ®𝑣) denotes a list, Val the set of values (Rat+ is the positive rationals),

PVar the set of program variables, PExp the set of expressions, and Cmd the set of commands.

Concrete semantics. To define the semantics of the language and to ensure that the language can

be used in compositional reasoning, we require the following instance data:
3

Instance Definition 1. We require a tuple (CMem,Wf , 𝜇∅, ·), where CMem is a set of memories,

Wf ⊆ CMem is a well-formedness predicate, 𝜇∅ ∈ CMem the empty-memory element, and

· : (CMem,CMem) ⇀ CMem is a memory composition operator.
4
The empty memory must be

well-formed and composition must maintain well-formedness.

InstanceDefinitionExample 1. In our running example linearmemorymodel,CMem isNat ⇀fin
(Val⊎{∅}), where the symbol ∅ records that a memory cell has been freed. Tracking freed memory

cells is a standard technique used in compositional UX reasoning [46] to ensure that the memory

model satisfies UX frame (IProp. 2). All memories are well-formed, i.e., Wf = CMem. The empty

memory 𝜇∅ is the empty function and the composition of two memories 𝜇 and 𝜇′ is their disjoint
union 𝜇 ⊎ 𝜇′ (i.e., their union defined only for nonoverlapping memories).

Instance Property 1. The components (CMem, 𝜇∅, ·) form a PCM.

We now discuss our big-step operational semantics for the language, with judgement

𝜎,C ⇓𝛾 𝑜 : 𝜎 ′

reading “the execution of command C with function implementation context 𝛾 in state 𝜎 results

in a state 𝜎 ′
with outcome 𝑜”. A program state is a pair 𝜎 = (𝑠, 𝜇) comprising a variable store

𝑠 : PVar ⇀fin Val and a memory 𝜇 ∈ CMem. Outcomes are defined as 𝑜 ::= ok | err | miss, denoting,
respectively, a successful execution, a fault due to a language error, and a fault due to a missing

resource error. We must distinguish between the two kinds of faults as the missing-resource errors

have a different role to play in compositional reasoning (see IProp. 2 below) and bi-abduction (see

§5.6). Function implementation contexts 𝛾 provide the function definitions used in function calls.

The only interesting case in the definition of the semantics is the case for memory actions, which

is given by instance data. We only discuss this case; for other cases, see the extended paper [31].

Instance Definition 2. Memory actions are defined by a relation, written 𝜇.𝛼 (®𝑣) ⇝ 𝑜 : (𝜇′, ®𝑣 ′),
which executes an action 𝛼 on memory 𝜇 with parameters ®𝑣 , and returns an outcome 𝑜 , memory 𝜇′,
and return values ®𝑣 ′. All memory actions must preserve well-formedness (Wf ).

Instance Definition Example 2. Our linear memory model has four memory actions: lookup,
mutate, new, and free. We give the ok and miss rules for defining the lookup action; the full set of

rules is in the extended paper [31]:

𝜇 (𝑛) = 𝑣

𝜇.lookup( [𝑛]) ⇝ ok : (𝜇, [𝑣])
𝑛 ∉ dom(𝜇)

𝜇.lookup( [𝑛]) ⇝ miss : (𝜇, [“MissingCell”, 𝑛])
3
We use the 𝑋 ⇀ 𝑌 to denote partial functions from 𝑋 to 𝑌 and 𝑋 ⇀fin 𝑌 to denote partial functions with finite support.

4
It would also be possible to incorporate the Wf predicate into the concrete memory type itself using subtyping or

dependent types. We chose to keep it separate so that our meta-theory is simply typed. This is a presentational choice; the

condition is the same with both choices.
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The following two rules lift the semantics of memory actions to the command level:

J®EK𝑠 = ®𝑣 𝜇.𝛼 (®𝑣) ⇝ ok : (𝜇′, ®𝑣 ′) |®𝑣 ′ | = |®x|

(𝑠, 𝜇), ®x := 𝛼 (®E) ⇓𝛾 ok : (𝑠 [®x ↦→ ®𝑣 ′], 𝜇′)

J®EK𝑠 = ®𝑣 𝜇.𝛼 (®𝑣) ⇝ 𝑜 : (𝜇′, ®𝑣) 𝑜 ≠ ok

(𝑠, 𝜇), ®x := 𝛼 (®E) ⇓𝛾 𝑜 : (𝑠 [err ↦→ ®𝑣], 𝜇′)

where JEK𝑠 denotes the standard evaluation of an expression E with respect to a store 𝑠 , resulting

either in a value or a dedicated symbol  ∉ Val denoting an evaluation error.

OX and UX frame. As is standard in compositional reasoning based on SL and ISL, we rely on the

fact that the concrete semantics of the language satisfies frame properties. To ensure that we have

these properties, we require that the concrete semantics of memory actions satisfy the standard OX

and/or UX frame properties (which in turn straightforwardly lift to the full concrete semantics):

Instance Property 2. For Wf (𝜇) and Wf (𝜇𝑓 ):
(OX) If (𝜇 · 𝜇𝑓 ).𝛼 (®𝑣) ⇝ 𝑜 : (𝜇′, ®𝑣 ′)

then ∃𝜇′′, ®𝑣 ′′, 𝑜 ′ . 𝜇.𝛼 (®𝑣) ⇝ 𝑜 ′ : (𝜇′′, ®𝑣 ′′) and
(𝑜 ′ ≠ miss ⇒ (𝑜 ′ = 𝑜 and ®𝑣 ′′ = ®𝑣 ′ and 𝜇′ = 𝜇′′ · 𝜇𝑓 ))

(UX) If 𝜇.𝛼 (®𝑣) ⇝ 𝑜 : (𝜇′, ®𝑣 ′) and 𝑜 ≠ miss and 𝜇′ · 𝜇𝑓 is defined
then (𝜇 · 𝜇𝑓 ).𝛼 (®𝑣) ⇝ 𝑜 : (𝜇′ · 𝜇𝑓 , ®𝑣 ′)

The OX property is more subtle than the UX property since to capture that we can extend

analysis results to larger states we must say, perhaps counterintuitively, that removing a “frame”

𝜇𝑓 from 𝜇 · 𝜇𝑓 results in either a miss outcome or the same behaviour as executing from the full

state, rather than more straightforwardly stating something about adding more state; see Yang

and O’Hearn [55] for an in-depth discussion of the OX property. Note that while both properties

capture that the analysis results can be extended to larger states, the frame 𝜇𝑓 is added to the initial

state 𝜇 for OX reasoning (as, recall the definition in §2, OX soundness universally quantifies over

all initial states) and to the final state 𝜇′ for UX reasoning (as UX soundness instead universally

quantifies over all final states).

4 Assertions and Function Specifications
We introduce our assertion language and its satisfaction relation, parametric on a resourcemodel com-

prising the resource assertions and satisfaction relation described in IDef. 3. The assertions provide

the pre- and postconditions of SL and ISL function specifications and are also used in assertion-based

constructs of our CSE engine such as folding and unfolding of user-defined predicates.

Assertion syntax. We define assertions, Asrt, assuming a set of logical variables, 𝑥,𝑦, 𝑧, ∈ LVar,
distinct from program variables, and a set of logical expressions, E ∈ LExp, which extends program

expressions PExp to include these logical variables and two new expressions E ∈ Val and E ∈ 𝜏

where 𝜏 ::= Null | Bool | Nat | . . . , meaning, that the expression E successfully evaluates to a value

and successfully evaluates to a value of type 𝜏 , respectively. The syntax of assertions is defined by:

𝐴 ∈ Asrt
def

= E | True | 𝐴1 ⇒ 𝐴2 | 𝐴1 ∨𝐴2 | ∃𝑥 . 𝐴 | emp | 𝐴1 ★ 𝐴2 | 𝑟 ( ®E1; ®E2) | 𝑝 ( ®E1; ®E2)

for x ∈ LVar, E ∈ LExp, ®E1, ®E2 ∈ ®LExp, 𝑟 ∈ Str, and 𝑝 ∈ Str. Our assertions comprise Boolean

assertions E, several first-order connectives and quantifiers, the empty-memory assertion emp,
assertions built using the separating conjunction ★, resource assertions 𝑟 ( ®E1; ®E2), and user-defined

predicate assertions 𝑝 ( ®E1; ®E2). The parameters of resource and user-defined predicate assertions

are split into in-parameters and out-parameters for automation purposes: in our CSE engine, the

consume operation requires the in-parameters to be known before consumption and learns the
out-parameters during consumption; see Lööw et al. [33] for further details.
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Satisfaction relation. To define the satisfaction relation for assertions, we introduce logical

interpretations, 𝜃 : LVar ⇀fin Val, and the evaluation of logical expressions, JEK𝜃,𝑠 , which extends

program expression evaluation to interpret logical variables using 𝜃 . The satisfaction relation,

𝜃, 𝜎 |= 𝐴, is defined in the extended paper [31]; the interesting cases are:

𝜃, (𝑠, 𝜇) |= 𝐴1 ★ 𝐴2 ⇔ ∃𝜇1, 𝜇2 . 𝜇 = 𝜇1 · 𝜇2 and 𝜃, (𝑠, 𝜇1) |= 𝐴1 and 𝜃, (𝑠, 𝜇2) |= 𝐴2

𝜃, (𝑠, 𝜇) |= 𝑟 ( ®E1; ®E2) ⇔ J ®E1K𝜃,𝑠 = ®𝑣1 and J ®E2K𝜃,𝑠 = ®𝑣2 and 𝜇 |=Res 𝑟 ( ®𝑣1; ®𝑣2) defined in IDef. 3.

As is standard for parametric separation logics, the semantics of ★ is defined with respect to the

composition operator · from the memory PCM instance data (IDef. 1). The semantics of resource

assertions 𝑟 ( ®E1; ®E2) is also defined by instance data:

Instance Definition 3. A set of resource assertions of the form 𝑟 ( ®𝑣1; ®𝑣2), and a satisfaction relation

for the resource assertions, 𝜇 |=Res 𝑟 ( ®𝑣1; ®𝑣2).

Instance Definition Example 3. In our linear memory model, there are two types of resources:

the positive cell assertion, E1 ↦→ E2 (in prettified syntax) with in-parameter E1 and out-parameter E2,
and the negative cell assertion, E ↦→ ∅ with in-parameter E. Their satisfaction relation is as follows:

𝜇 |=Res 𝑛 ↦→ 𝑣 ⇔ 𝜇 = {𝑛 ↦→ 𝑣}
𝜇 |=Res 𝑛 ↦→ ∅ ⇔ 𝜇 = {𝑛 ↦→ ∅}

Program logics and function specifications. On top of our assertion language, we define the

standard SL and ISL function triples (and quadruples, to describe both successful and erroneous

outcomes). Our theory additionally supports exact separation logic triples [34], which are triples that

are valid both in the SL and ISL senses (i.e., they can be used for both types of reasoning). As the SL,

ISL, and ESL definitions are standard, we only give the formal definitions in the extended paper [31].

It is important that the definitions are indeed standard, otherwise CSE implementations based on

our theory would not be formally interoperable with other analysis implementations based on SL

and ISL (i.e., one could not formally exchange specifications between the implementations).

We additionally need the following definitions to eventually state our engine soundness theorems.

A function specification context, Γ, is a function from function identifiers to sets of function

specifications. We say a function specification context Γ is valid w.r.t. a function implementation

context𝛾 , denoted |= (𝛾, Γ), when all function specifications in Γ are valid w.r.t.𝛾 . Formal definitions

are, again, in the extended paper [31].

5 CSE Engine
We introduce our CSE engine and prove its OX and UX soundness theorems. Our discussion is

focused on the parameters of the relevant theory that we say form a symbolic memory model and
our soundness relations. The relevant parameters are: the symbolic memory data type (IDef. 4),

its satisfaction relation (IDef. 5), symbolic memory actions (IDef. 6), and consume and produce

operations (IDef. 7) and their associated IProps. A larger excerpt of the formal rules of the engine is

given in the extended paper [31]; and the full set of rules is available in our Rocq mechanisation.

5.1 Symbolic States
The symbolic states of our engine, denoted 𝜎̂ , are built out of logical expressions LExp with the

extra condition that none of the logical expressions have program variables. We use hat-notation to

distinguish symbolic definitions, such as 𝜎̂ for symbolic state compared with 𝜎 for concrete state.

The most interesting component of symbolic states is their symbolic memory component, which

is given by instance data:
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Instance Definition 4. A pair (SMem, 𝜇∅), where SMem is a symbolic memory and 𝜇∅ ∈ SMem
is the empty memory.

InstanceDefinition Example 4. Our linearmemorymodel comprises SMem equalling LExp ⇀fin

(LExp ⊎ {∅}) and 𝜇∅ equalling the empty function.

We are now ready to give the full definition of symbolic state: a symbolic state 𝜎̂ is a tuple

(𝑠, 𝜇, ˆP, 𝜋) where: 𝑠 : PVar ⇀fin LExp is a symbolic store; 𝜇 ∈ SMem is a symbolic memory from

IDef. 4;
ˆP is a multiset of symbolic user-defined predicates, where a symbolic predicate has the form

𝑝 (®̂E1; ®̂E2) where 𝑝 ∈ Str is a predicate name and
®̂E1 ∈ ®LExp are the in-parameters and

®̂E2 ∈ ®LExp
the out-parameters; and 𝜋 ∈ LExp is a path condition that captures constraints imposed during

execution. We use the syntax 𝜎̂ .mem, 𝜎̂ .pc etc. to access components of symbolic state and the

syntax 𝜎̂ [mem := 𝜇′] etc. to update components of symbolic state. We use lv(𝜎̂) to refer to the

logical variables of a symbolic state 𝜎̂ .

We define the semantic meaning of symbolic states using a satisfaction relation between concrete

and symbolic states of the form 𝜃, (𝑠, 𝜇) |= 𝜎̂ where 𝜃 : LVar → Val is a logical interpretation,

𝑠 : PVar → Val is a variable store and 𝜇 ∈ CMem a concrete memory. The satisfaction relation

for symbolic states depends on the satisfaction relations for symbolic stores 𝜃, 𝑠 |=Sto 𝑠 , symbolic

memories 𝜃, 𝜇 |=Mem 𝜇, and symbolic predicates 𝜃, 𝜇 |=Pred
ˆP: the satisfaction relations for symbolic

stores and symbolic predicates are as expected, see the extended paper [31]; the satisfaction relation

for symbolic memories is given by instance data:

Instance Definition 5. A satisfaction relation for symbolic memory of the form 𝜃, 𝜇 |=Mem 𝜇, with

the property that 𝜃, 𝜇 |=Mem 𝜇∅ ⇔ 𝜇 = 𝜇∅ .

Instance Definition Example 5. In our linear memory model, the satisfaction relation for

symbolic memory is defined as follows, where for succinct presentation we say J∅K𝜃 = ∅:
𝜃, 𝜇 |=Mem {Ê1𝑎 ↦→ Ê1𝑒 , . . . , Ê

𝑛
𝑎 ↦→ Ê𝑛𝑒 } ⇔ 𝜇 = ⊎𝑛

𝑖=1{JÊ𝑖𝑎K𝜃 ↦→ JÊ𝑖𝑒K𝜃 }

The satisfaction relation 𝜃, (𝑠, 𝜇) |= (𝑠, 𝜇, ˆP, 𝜋) for symbolic state is defined by:

∃𝜇1, 𝜇2. 𝜇 = 𝜇1 · 𝜇2 and 𝜃, 𝑠 |=Sto 𝑠 and 𝜃, 𝜇1 |=Mem 𝜇 and 𝜃, 𝜇2 |=Pred
ˆP and J𝜋K𝜃 = true

We say that a symbolic state 𝜎̂ is satisfiable, denoted SAT(𝜎̂), when ∃𝜃, 𝑠, 𝜇. 𝜃, (𝑠, 𝜇) |= 𝜎̂ , and say

that it implies an expression, denoted 𝜎̂ |= Ê, when ∀𝜃, 𝑠, 𝜇. 𝜃, (𝑠, 𝜇) |= 𝜎̂ ⇒ JÊK𝜃 = true.

5.2 Engine Judgement
The symbolic semantics of our CSE engine is given by a judgement of the form:

𝑂, 𝜎̂,C ⇓𝑚Γ 𝑜 : 𝑂 ′, 𝜎̂ ′

where: oracles 𝑂,𝑂 ′
of type Nat → Nat are used to model angelic nondeterminism,

5
e.g. when

there are multiple applicable function specifications to choose from for a function call; the mode𝑚,

either OX, UX, or EX (for exact), enables the engine to switch its behaviour depending on what

type of soundness we need, e.g. what kind of function specifications to use in function calls, and

the set of outcomes, 𝑜 ::= ok | err | miss | abort, extends the outcomes of the concrete language

with abort, e.g. when a chosen function specification is not applicable.

5
See, e.g., Owens et al. [41] for further discussion on oracles. In short, each number𝑂 (0),𝑂 (1), . . . represents an answer

to a choice and the oracle is shifted once every time a choice is made (such that the oracle can always be queried by looking

at𝑂 (0)), ultimately resulting in an output oracle𝑂 ′ = 𝜆𝑛. 𝑂 (𝑛 +𝑚) where𝑚 is the number of choices made. The oracle

semantics we use is an intentionally simplistic model to avoid cluttering our formalism. In particular, the same angelic

choice is taken in each demonic branch. See Dardinier et al. [13] (using multi-relations) or Jacobs et al. [22] (using monads)

for more expressive formalisms for nondeterminism.
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5.3 Memory-Action Command
The symbolic semantics of memory-action commands, analogous to the concrete semantics, is

parametric on an instance-given symbolic action execution relation.

Instance Definition 6. A relation 𝜇.𝛼 (®̂E) ⇝ 𝑜 : (𝜇′, 𝜋 ′, ®̂E′), which executes an action 𝛼 onmemory

𝜇 with arguments
®̂E, and returns an outcome 𝑜 , memory 𝜇′, path condition 𝜋 ′

, and return values
®̂E′.

If 𝑜 ∈ {miss, abort}, then the symbolic memory must remain unchanged, i.e., 𝜇 = 𝜇′.

Instance Definition Example 6. To illustrate, we give some of the symbolic rules for the lookup
action of our linear memory model (for the rest, see the extended paper [31]), specifically, the

success and missing resource rules:

𝜇 (Ê′
𝑙
) = Ê 𝜋 ′ = (Ê𝑙 = Ê′

𝑙
)

𝜇.lookup( [Ê𝑙 ]) ⇝ ok : (𝜇, 𝜋 ′, [Ê])
𝜋 ′ = (Ê𝑙 ∈ Nat ∧ Ê𝑙 ∉ dom(𝜇))

𝜇.lookup( [Ê𝑙 ]) ⇝ miss : (𝜇, 𝜋 ′, [“MissingCell”, Ê𝑙 ])

where, note, the first rule branches over all possible addresses Ê′
𝑙
where Ê𝑙 = Ê′

𝑙
holds. We discuss

other “branching strategies” in §6.1, where we discuss variants of the memory model.

The following symbolic rules lift, again analogously to the concrete semantics, the memory actions

to the full semantics, where JEK𝑠 denotes symbolic expression evaluation, which evaluates a program

expression E w.r.t. a symbolic store 𝑠:

J®EK
𝑠
=
®̂E 𝜇.𝛼 (®̂E) ⇝ ok : (𝜇′, 𝜋 ′, ®̂E′) |®̂E′ | = |®x|

𝑠′ = 𝑠 [®x ↦→ ®̂E′] 𝜋 ′′ = (𝑠 (®x), ®̂E, ®̂E′ ∈ Val ∧ 𝜋 ′ ∧ 𝜋)
𝑂, (𝑠, 𝜇, ˆP, 𝜋), ®x := 𝛼 (®E) ⇓𝑚Γ ok : 𝑂, (𝑠′, 𝜇′, ˆP, 𝜋 ′′)

J®EK
𝑠
=
®̂E 𝜇.𝛼 (®̂E) ⇝ 𝑜 : (𝜇′, 𝜋 ′, ®̂E′) 𝑜 ≠ ok

𝑠′ = 𝑠 [err ↦→ ®̂E′] 𝜋 ′′ = (®̂E ∈ Val ∧ 𝜋 ′ ∧ 𝜋)
𝑂, (𝑠, 𝜇, ˆP, 𝜋), ®x := 𝛼 (®E) ⇓𝑚Γ err : 𝑂, (𝑠′, 𝜇′, ˆP, 𝜋 ′′)

We require the following property to be able to prove that our CSE engine, specifically, the memory-

action commands, satisfy our two soundness theorems:

Instance Property 3. The symbolic memory-action semantics must be OX/UX sound w.r.t. the

concrete memory-action semantics, i.e., the two semantics must satisfy the OX/UX soundness

definitions introduced in §2 but with the command-level concrete semantics replaced by the

memory-action-level concrete semantics, the satisfaction relation |= replaced by the satisfaction

relation |=Mem, etc. The full formal properties are given in the extended paper [31].

5.4 Consume and Produce Operations and Assertion-Based Commands
We now discuss the definition, soundness, and usage of our memory-model-parametric consume
and produce operations that form the basis of our CSE engine’s consume-produce architecture.

Definition. The judgements of consume and produce are as follows. First, we introduce symbolic

substitutions,
ˆ𝜃 : LVar ⇀fin LExp, which the two operations use to instantiate free logical variables.

Now, the judgements of consume and produce are:

consume(𝑚,𝑂,𝐴, ˆ𝜃, 𝜎̂) ⇝ (𝑜,𝑂 ′, ˆ𝜃 ′, 𝜎̂ ′) and produce(𝐴, ˆ𝜃, 𝜎̂) ⇝ 𝜎̂ ′

where the judgement for consume states that the consumption of assertion 𝐴 in mode𝑚 (which

decides how Boolean information is consumed) with an oracle𝑂 and an initial symbolic substitution

ˆ𝜃 from state 𝜎̂ results in outcome 𝑜 (ok or abort), an updated oracle𝑂 ′
, symbolic state 𝜎̂ ′

where the

symbolic state corresponding to 𝐴 has been removed, and extended symbolic substitution
ˆ𝜃 ′ now

containing mappings for all free logical variables of 𝐴; and the judgement for produce states that
the production of 𝐴 with symbolic substitution

ˆ𝜃 in state 𝜎̂ results in state 𝜎̂ ′
where the symbolic

state corresponding to 𝐴 has been added.
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We only discuss how resource assertions 𝑟 ( ®E1; ®E2) are consumed and produced (remaining rules

are inspired by the rules of Lööw et al. [32],
6
which in turn are inspired by Gillian). The consume

and produce operations are parametric on two resource-level consume and produce operations,

which we call, respectively, resource consume consumeRes and resource produce produceRes:

Instance Definition 7. Two operations consumeRes and produceRes of the form explained below:

consumeRes (𝑚,𝑂, 𝑟,
®̂Ein, 𝜇) ⇝ (𝑜,𝑂 ′, ®̂Eout, (𝜇′, 𝜋𝑖 , 𝜋)) and produceRes (𝑟,

®̂Ein, ®̂Eout, 𝜇) ⇝ (𝜇′, 𝜋)

Instance Definition Example 7. For our linear memory model, the following are two of the rules

for consumeRes and produceRes (again, the rest of the rules are in the extended paper [31]):

𝜇 = 𝜇𝑓 ⊎ {Ê1 ↦→ Ê2}
consumeRes (𝑚,𝑂, ↦→, [Ê], 𝜇) ⇝ (𝑜𝑘,𝑂, Ê2, (𝜇𝑓 , true, Ê = Ê1))

𝜇′ = 𝜇 ⊎ {Ê1 ↦→ Ê2}
produceRes (↦→, [Ê1], [Ê2], 𝜇) ⇝ (𝜇′, true)

consumeRes (𝑚,𝑂, 𝑟, ˆ𝜃 (®Ein), 𝜎̂ .mem) ⇝ (𝑜,𝑂′, ®̂Eout, (𝜇′, 𝜋𝑖 , 𝜋))
𝜎̂ |= 𝜋𝑖 𝜎̂′ = 𝜎̂ [mem := 𝜇′, pc := 𝜋 ∧ 𝜎̂ .pc]

rest of the rule omitted

consume(𝑚,𝑂, 𝑟 (®Ein; ®Eout), ˆ𝜃, 𝜎̂) ⇝ (𝑜,𝑂′, ˆ𝜃 ′, 𝜎̂′′)

Fig. 2. Implementation of consume.

The consumeRes and produceRes op-

erations, analogous to memory ac-

tions, are lifted into consume and pro-
duce. We explain the consume case,

the produce case is similar. See the

consume rule in Fig. 2, which illus-

trates the most interesting parts of

how consumeRes is lifted into consume. There are two conditions that consumeRes outputs: 𝜋𝑖 ,
which must be implied by the initial state, and 𝜋 , which is appended to the path condition of the

updated state. The two conditions are used to implement different types of branching, which we

illustrate by example when discussing variants of the linear memory model in §6.1.

Soundness. We introduce OX and UX soundness properties that formalise that the consume
and produce operations “correctly” consume and produce their input assertions. Our soundness

properties are based on the soundness properties for consume and produce introduced by Lööw

et al. [32], which we have refactored into four properties: (1) consume OX soundness, (2) produce
OX soundness, (3) consume UX soundness, (4) produce UX soundness. The full properties are

available in the extended paper [31]; in short, the properties relate the behaviour of consume
and produce to the satisfaction relation of the assertion language. For example, UX soundness of

consume requires that the composition of the models of the input assertion and the output symbolic

state forms a model of the input symbolic state:

If consume(𝑚,𝑂,𝐴, ˆ𝜃, 𝜎̂) ⇝ (𝑜𝑘,𝑂 ′, ˆ𝜃 ′, 𝜎̂𝑓 )
and 𝜃, (𝑠, 𝜇𝐴) |= ˆ𝜃 ′ (𝐴) and 𝜃, (𝑠, 𝜇𝑓 ) |= 𝜎̂𝑓 and (𝜇𝐴 · 𝜇𝑓 ) is defined

then 𝜃, (𝑠, 𝜇𝐴 · 𝜇𝑓 ) |= 𝜎̂

To ensure that our soundness properties of consume and produce hold, we require that resource-
only variants of the properties to hold for the consumeRes and produceRes operations.

Instance Property 4. The consumeRes and produceRes operations must be OX/UX sound. Again,

the full properties are stated in the extended paper [31]. To exemplify the resource-only variant of

6
Our operations support the subset of assertions usually supported by consume and produce operations. That is, both
operations support Boolean assertions, existential quantification (for consume only in OX mode, we do not know of a

use-case in UX mode), the empty-memory assertion, separating-conjunction assertions, resource assertions, and user-

defined-predicate assertions, and, additionally, produce supports disjunction assertions.
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the properties, we give the resource-only variant of the UX soundness property for consume (the
reader should compare the property with the property above):

If consumeRes (𝑚,𝑂, 𝑟,
®̂Ein, 𝜇) ⇝ (𝑜𝑘,𝑂 ′, ®̂Eout, (𝜇𝑓 , 𝜋fi, 𝜋𝑓 )) and J®̂EinK𝜃 = ®𝑣in and J®̂EoutK𝜃 = ®𝑣out

and J𝜋𝑓 K𝜃 = true and 𝜃, 𝜇𝑓 |=Mem 𝜇𝑓 and 𝜇𝑟 |=Res 𝑟 (®𝑣in; ®𝑣out) and (𝜇𝑟 · 𝜇𝑓 ) is defined
then J𝜋fiK𝜃 = true and 𝜃, (𝜇𝑟 · 𝜇𝑓 ) |=Mem 𝜇

With the above definitions in place, we have been able to prove the following:

Lemma 5.1. Given OX/UX sound consumeRes and produceRes operations, our consume and produce
operations are OX/UX sound.

Usage. We have mechanised and proved sound the standard consume-produce definitions of the

function-call command and fold/unfold commands for user-defined predicates, the full definitions

are available in the extended paper [31] for completeness. The function-call command we have

proved OX and UX sound, whereas the fold/unfold commands we have proved OX sound.
7
The

successful proofs of these commands show that our consume-produce properties are sufficient for

their core use cases. Additionally, as we discuss in §5.6, the analyses we have built on top of our

engine show that our consume-produce properties are also sufficient for those analyses.

5.5 Engine Soundness
Our OX soundness and UX soundness theorems are as follows:

8

Theorem 5.2 (OX soundness). Let𝑚 ∈ {OX, EX} and assume |= (𝛾, Γ), when the CSE engine is
instantiated with OX sound memory actions, consumeRes, and produceRes, then the following holds:

If 𝜎,C ⇓𝛾 𝑜 : 𝜎 ′ and 𝜃, 𝜎 |= 𝜎̂ and
(∀𝑜,𝑂 ′, 𝜎̂ ′ . 𝑂, 𝜎̂,C ⇓𝑚Γ 𝑜 : 𝑂 ′, 𝜎̂ ′ and SAT(𝜎̂ ′) ⇒

𝑜 ≠ abort and (𝑜 = miss ⇒ 𝜎̂ ′ .preds = ∅))
then ∃𝑂 ′, 𝜎̂ ′, 𝜃 ′ . 𝑂, 𝜎̂,C ⇓𝑚Γ 𝑜 : 𝑂 ′, 𝜎̂ ′ and 𝜃 ′ |lv(𝜎̂ ) = 𝜃 and 𝜃 ′, 𝜎 ′ |= 𝜎̂ ′

Theorem 5.3 (UX soundness). Let𝑚 ∈ {UX, EX} and assume |= (𝛾, Γ), when the CSE engine is
instantiated with UX sound memory actions, consumeRes, and produceRes, then the following holds:

If 𝑂, 𝜎̂,C ⇓𝑚Γ 𝑜 : 𝑂 ′, 𝜎̂ ′ and 𝑜 ≠ abort and (𝑜 = miss ⇒ 𝜎̂ ′ .preds = ∅) and 𝜃, 𝜎 ′ |= 𝜎̂ ′

then ∃𝜎. 𝜎,C ⇓𝛾 𝑜 : 𝜎 ′ and 𝜃, 𝜎 |= 𝜎̂

Both theorems have restrictions on abort and miss outcomes. For the OX theorem, the condition

should be read as follows: no reachable satisfiable state has an outcome abort or an outcome

miss unless there are no symbolic predicates in the state. For both theorems, the soundness of

miss outcomes cannot be guaranteed in the presence of symbolic predicates because the source

of miss outcomes, memory actions (IDef. 6), do not take symbolic predicates into consideration

(doing so would require implementing an automated complete unfolding procedure, which none

of the existing CSE tools or platforms implement). To exemplify, say we are working with our

running example linear memory model and have defined the following user-defined predicate:

foo(;){1 ↦→ 1}. First, let C def

= x := lookup(1), 𝜎̂ def

= (∅, 𝜇∅, {foo(;)}, true), and 𝜎
def

= (∅, {1 ↦→ 1}).
Now, note that ∅, 𝜎 |= 𝜎̂ , concrete execution of C from 𝜎 only results in an ok outcome, and symbolic

execution of C from 𝜎̂ only results in a miss outcome. This breaks both OX and UX soundness:

there is no corresponding execution for the concrete execution and vice versa.

7
Lööw et al. [32] claim that the fold command is UX sound if folding is restricted to strictly exact predicates (an assertion 𝐴

is strictly exact iff 𝜃, (𝑠, 𝜇 ) |= 𝐴 ∧ 𝜃, (𝑠, 𝜇′ ) |= 𝐴 ⇒ 𝜇′ = 𝜇 [54, p. 149]), but during our mechanisation work we found a

counterexample to this claim. We have not investigated a new condition to make the command UX sound.

8
Here, we have simplified away some uninteresting details of the statements, see the Rocq mechanisation for the full details.
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5.6 Analyses
We now discuss two analyses we have built on top of our CSE engine and proved sound: a function
specification verification analysis to exemplify an OX analysis application and a true bug-finding
analysis based on bi-abduction to exemplify an UX analysis application. We additionally discuss the

trusted computing base (TCB) of analysis results when using our engine.

The two analyses. The development and verification of our OX analysis application was relatively

uneventful: our work validates that our adapted consume-produce properties are sufficient for this

OX application, but the analysis itself is standard in the consume-produce literature, and we did

not run into any particular problems with porting its proof to our parametric setting. We therefore

only discuss our UX application here; see the extended paper [31] for our OX application.

Bi-abduction is a technique that facilitates automatic ISL specification synthesis by incrementally

discovering the resources needed to execute a given piece of code starting from an empty pre-

condition/symbolic state. It was first introduced in the OX setting [9, 10], forming the basis of the

Infer tool [8]. It was later ported to the OX consume-produce setting in the JaVerT 2.0 project [18],

by re-imagining bi-abduction as fixes-from-missing-resource-errors. With the introduction of incor-

rectness separation logic [46], the original bi-abduction algorithm was ported to the UX setting of

true bug-finding, underpinning the Infer-Pulse tool [26]. Following this, Lööw et al. [32] showed

that the fixes-from-missing-resource-errors approach is UX sound in the setting of linear memory.

Here, we generalise Lööw et al. [32]’s UX result to our memory-model-parametric setting.

We have built a bi-abductive engine with judgement𝑂, 𝜎̂,C ⇓biΓ 𝑜 : 𝑂 ′, (𝜎̂ ′, 𝐴) on top of our engine
with judgement 𝑂, 𝜎̂,C ⇓UXΓ 𝑜 : 𝑂 ′, 𝜎̂ ′

. The 𝐴 in the judgement is an assertion representing an anti-
heap, which captures the missing resources needed to execute the commandC in the following sense:

Theorem 5.4 (CSE with Bi-Abduction: Soundness).

If |= (𝛾, Γ) and 𝑂, 𝜎̂,C ⇓biΓ 𝑜 : 𝑂 ′, (𝜎̂ ′, 𝐴) and 𝜃, 𝜎 ′ |= 𝜎̂ ′

then ∃𝑠, 𝜇, 𝜇fix . 𝜃, (𝑠, 𝜇) |= 𝜎̂ [pc := 𝜎̂ ′ .pc] and 𝜃, (𝑠, 𝜇fix) |= 𝐴 and (𝑠, 𝜇 · 𝜇fix),C ⇓𝛾 𝑜 : 𝜎 ′

In short, the bi-abductive engine works by catching missing-resource errors and abort errors during

execution, which are given to a memory-model-dependent operation fix that takes, as input, the
current symbolic state and constructs one or more assertions representing the resources needed

for continued execution, which in turn are produced into the current symbolic state and appended

to the anti-heap. The soundness of the engine (Thm. 5.4) follows from the UX soundness of our

CSE engine (Thm. 5.3) and produce (Lem. 5.1). To prove soundness, we had to adapt the soundness

statement and proofs from previous work [18, 32], which relied on having a symbolic composition

operator and a symbolic frame property, which we do not require as parameters.

Trusted computing base. As one would expect from a mechanised theory, our CSE theory comes

with a strong TCB story: the TCB of analysis results includes only the semantics of assertions (to

express pre- and postconditions) and the concrete semantics of the language. The TCB can be further

reduced by considering only first-order assertions, as then the assertion language can be removed

from the TCB (this is analogous to sound program logics, see, e.g., Iris’ adequacy theorem [24]).

The fact that the concrete memory model is part of the TCB (as it is part of the concrete

semantics), means that one must choose the model carefully. Appropriate TCB models have a direct

correspondence to a memory model specified by a language standard or the like. Because of space

constraints, we do not discuss this point further but show in our Rocq development how analysis

artefacts like ghost state annotations (e.g., like the annotations used by our fractional ownership

model introduced in §6.2) can easily be removed from the TCB by a standard simulation argument.
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6 Memory-Model Instances
Now having introduced the IDefs. and IProps. required to instantiate our CSE theory, we discuss ad-

ditional examples of memory-model instances that fit into our CSE theory, as summarised in Tab. 1.

We emphasise that the primary purpose of our discussion in this section is to show that a

wide array of memory models fit into our CSE theory. We do not have sufficient page budget to

formally introduce all required IDefs. (i.e, IDefs. 1–7) and discuss proofs of the required IProps.

(i.e., IProp. 1–4) for each memory instance. Therefore, our discussion is informal and focused on

what we have found to be the primary difficulty to get right in designing memory models: the

memory data type (IDef. 1), such that compositional memory actions (IDef. 2) that work over SL/ISL-

style partial state can be defined etc. (We give additional definitions in the extended paper [31]

and all definitions are available in our Rocq development.) With the right data type in place, we

have found other major instance data, such as symbolic memory actions (IDef. 6) and consumeRes
and produceRes operations (IDef. 7), to be relatively straightforward to define. In particular, for

simpler memory models, symbolic components can be designed by “symbolically lifting” of the

corresponding concrete component, in particular, the symbolic data type and memory actions.

For an example, compare the concrete data type (IDef. 1) and symbolic data type (IDef. 4) of our

running example memory model and note how the symbolic data type is structurally identical to

the concrete data type but abstracts both Nat and Val to LExp.

6.1 Linear Memory Models and Memory-Model Design Considerations
We have mechanised and proved sound multiple variants of our running example linear memory

model (see again Tab. 1). As discussed in the introduction (§1), there are multiple degrees of freedom

available when designing a symbolic memory model. Simple linear memory models provide a

good stage to illustrate this; as we have already introduced the various IDefs. of our running

example linear memory model, we in this section discuss design considerations relating to OX vs.

UX analysis, such as what types of “branching strategies” are allowed by different reasoning modes.

Operational meaning of OX vs. UX. The different requirements arising from OX and UX soundness

can be exploited in memory-model design. Intuitively, OX analyses like verification must consider

all execution paths whereas UX analyses like bug-finding only need to consider paths with bugs.

More precisely: operationally, OX soundness allows for dropping information along execution paths

but not dropping paths, whereas UX soundness allows for dropping paths but not information.

Path maintenance, illustrated through branching strategies. When updating and removing parts

of memory, there are multiple ways to handle “branching”, i.e., situations where there are multiple

potential parts of memory to update/remove, sometimes referred to as “matches”. To exemplify, we

discuss branching in the context of consumeRes for linear memorymodels (that is, variants of IDef. 7).

For the discussion, it is important to have Fig. 2 fresh in mind. Say we have 𝜇 = {1 ↦→ 1, 2 ↦→ 1}
and 𝜋 = 1 ≤ 𝑥 ≤ 2 and are about to consume a resource assertion 𝑥 ↦→ 1 knowing 𝑥 = 𝑥 . Now

consider the following three branching strategies, where (Ê1,𝑂 ′) ∈ 𝑂 (dom(𝜇)) denotes that we
angelically pick an element from dom(𝜇):

𝜇 = 𝜇𝑓 ⊎ {Ê1 ↦→ Ê2}
consumeRes (𝑚,𝑂, ↦→, [Ê], 𝜇) ⇝
(𝑜𝑘,𝑂, [Ê2], (𝜇𝑓 , true, Ê = Ê1))

(Ê1,𝑂′) ∈ 𝑂 (dom(𝜇))
𝜇 = 𝜇𝑓 ⊎ {Ê1 ↦→ Ê2}

consumeRes (𝑚,𝑂, ↦→, [Ê], 𝜇) ⇝
(𝑜𝑘,𝑂 ′, [Ê2], (𝜇𝑓 , Ê = Ê1, Ê = Ê1))

(Ê1,𝑂′) ∈ 𝑂 (dom(𝜇))
𝜇 = 𝜇𝑓 ⊎ {Ê1 ↦→ Ê2}

consumeRes (𝑚,𝑂, ↦→, [Ê], 𝜇) ⇝
(𝑜𝑘,𝑂 ′, [Ê2], (𝜇𝑓 , true, Ê = Ê1))

The left rule belongs to our running example linear memory model and the two other rules to

variant models we have defined. The left rule branches over all possible matches; in our example, we

get two branches: one branch with 𝜇𝑓 = {2 ↦→ 1} and 𝜋 = 1 ≤ 𝑥 ≤ 2 ∧ 𝑥 = 1 and one branch with
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𝜇𝑓 = {1 ↦→ 1} and 𝜋 = 1 ≤ 𝑥 ≤ 2 ∧ 𝑥 = 2. The middle rule implements unique-match branching

since the rule is only applicable when there is a unique match. The rule is not applicable to our

example as neither 𝑥 = 1 nor 𝑥 = 2 is implied by the current symbolic state. We have proved a

linear memory model implementing this type of branching to be both OX sound and UX sound.

Interestingly, the same rule but with conclusion · · · ⇝ (𝑜𝑘,𝑂 ′, [Ê2], (𝜇𝑓 , Ê = Ê1, true)) is OX sound

but not UX sound because our CSE engine use the entire symbolic input state in the implication

check – meaning that the implication might not hold w.r.t. the smaller output state. (With a stricter

implication check requiring that the path condition, rather than the full symbolic state, implies

the matching condition (in the example: Ê = Ê1), the rule would be UX sound.) Lastly, the right
rule implements, what we call, cut branching because the rule simply angelically picks one branch

without checking if there are more matches. We have proved a linear memory model implementing

this type of branching to be UX sound but not OX sound; the model is not OX sound because in

OX reasoning we are not allowed to drop matches.

𝜇 (Ê′
𝑙
) = Êold 𝜇′ = 𝜇 [Ê′

𝑙
↦→ Ê]

𝜋 ′ = (Ê𝑙 = Ê′
𝑙
∧ Êold ∈ Val)

𝜇.mutate( [Ê𝑙 , Ê]) ⇝ ok : (𝜇′, 𝜋 ′, [])

Fig. 3. Successful mutate rule.

Information maintenance. Beyond variants of our run-

ning example linear memory model with different branch-

ing strategies, we have also mechanised and proven sound

a memory-model instance for the traditional linear mem-

ory model from the OX literature, with concrete data type

Nat ⇀fin Val. This is an OX-only model: the model does not

keep track of freed cells, using ∅, and can therefore not be

proven UX sound (because it does not satisfy UX frame). Since it is an OX-only model, dropping in-

formation is allowed. As a simple illustration, consider Fig. 3, containing the successful mutate rule
of our running example linear memory model. Note that the rule ensures that the information that

the previous cell value successfully evaluates is kept by updating the path condition with Êold ∈ Val.9

This is optional in OX-only models: our OX-only model is defined using rules that do not add evalua-

tion information to the path condition, andwe have still been able to prove themodel to be OX sound.

6.2 Fractional Ownership Memory Model
To illustrate that different ownership disciplines fit into our CSE theory, we have mechanised and

proved OX and UX sound a linear memory model with fractional ownership [5, 6] rather than

exclusive ownership, as utilised in the memory models discussed up to this point. A memory model

similar to the fractional ownershipmemorymodel we discuss here has previously been implemented

in an experimental branch of Gillian and tested on a small set of hand-written examples.

Model description. The memory model is best explained in terms of resources (i.e., IDef. 3). Points-

to assertions for the model are of the form 𝑛
𝑞
↦→ 𝑣 , where 𝑞 ∈ (0, 1] ⊂ Rat+ specifies the amount

of ownership. Less-than-1 ownership (𝑞 < 1) gives read permission to the location 𝑛, while full
ownership (𝑞 = 1) gives both read and write permissions. The other IDefs. of the model are relatively

straightforward extensions of our running example memory model. In particular, the concrete

memory data type of the model is Nat ⇀fin ((Val,Rat+) ⊎ {∅}) and the symbolic memory data

type is derived from this data type by symbolic lifting, i.e., LExp ⇀fin ((LExp, LExp) ⊎ {∅}). The
implementation of memory actions, consumeRes, and produceRes are, as one would expect, also

similar but with additional ownership checks. For illustration, we show the two successful rules of

consumeRes for points-to assertions:
10

9
This is not the only way to ensure this. It is also possible to, e.g., maintain an invariant saying that the path condition must

include this type of information. The point being made here is that this needs to be ensured in some way.
10
The “Ê′

𝑙
∉ dom(𝜇𝑓 )” expression in the first rule is needed for UX soundness, to not drop disjointedness information.
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𝜇 ∈ CMem

𝜇 (𝑛1) = ({0 ↦→ 3, 1 ↦→ 5}, Some(2))
𝜇 (𝑛2) = ({1 ↦→ 2, 2 ↦→ false},None)
𝜇 (𝑛3) = ∅

𝑛3

𝑛2

𝑛1

𝑏𝑜𝑢𝑛𝑑 : Some(2)3 5

𝑏𝑜𝑢𝑛𝑑 : None3 false

∅

(𝑛1, 0) ↦→ 3 ★

(𝑛1, 1) ↦→ 5 ★

Bound(𝑛1; 2) ★
(𝑛2, 1) ↦→ 3 ★

(𝑛2, 2) ↦→ false ★

𝑛3 ↦→ ∅

Fig. 4. Example block-offset memory instance 𝜇 expressed formally (left), visually (centre), and as a composi-
tion of resource assertions (right).

𝜇 = 𝜇𝑓 ⊎ {Ê′
𝑙
↦→ (Ê𝑣, Ê′𝑞)}

consumeRes (𝑚,𝑂, ↦→, [Ê𝑙 , Ê𝑞], 𝜇) ⇝
(𝑜𝑘,𝑂, [Ê𝑣], (𝜇𝑓 , true, Ê𝑙 = Ê′

𝑙
∧ Ê𝑞 = Ê′𝑞 ∧ Ê′

𝑙
∉ dom(𝜇𝑓 )))

𝜇 = 𝜇𝑓 ⊎ {Ê′
𝑙
↦→ (Ê𝑣, Ê′𝑞)}

𝜇′ = 𝜇𝑓 ⊎ {Ê′
𝑙
↦→ (Ê𝑣, Ê′𝑞 − Ê𝑞)}

consumeRes (𝑚,𝑂, ↦→, [Ê𝑙 , Ê𝑞], 𝜇) ⇝
(𝑜𝑘,𝑂, [Ê𝑣], (𝜇′, true, Ê𝑙 = Ê′

𝑙
∧ Ê𝑞 < Ê′𝑞))

6.3 Block-Offset Memory Model for C
Our CSE theory is not limited to different variants of the linear memory model. To illustrate this,

we have mechanised and proved OX and UX sound a block-offset memory model for C. Originally

inspired by the memory model of the verified CompCert C compiler [29], the model has previously

been implemented in Gillian and has been used in Gillian-based teaching, but no detailed definition

or soundness results have previously been given.

We describe, component by component, the concrete-memory instance data (CMem,Wf , 𝜇∅, ·)
for IDef. 1. The memory data type is as follows:

CMem
def

= Nat ⇀fin (CMemB ⊎ {∅}) where CMemB

def

= (Nat ⇀fin Val,Nat?)

using notation 𝑡? to denote the option type for type 𝑡 , with constructors None and Some. The
concrete memory comprises two parts:CMem is a mapping from block identifiers to blocks;CMemB

is a block comprising a linear array and a bound indicating the fixed size of the array. (In C terms,

the block identifiers are essentially pointers returned by malloc(), and the blocks describe the

contents and size of the corresponding allocated memory.) This data structure allows us to represent

partial blocks, required to be able to define |=Res, i.e., IDef. 3, which we discuss shortly. Fig. 4 gives an

example of a partial concrete memory given by map 𝜇 with domain of block identifiers {𝑛1, 𝑛2, 𝑛3}.
The mapping 𝜇 (𝑛1) is a complete block as the bound is 2 and both cells are present in the block. The

mapping 𝜇 (𝑛2) is a partial block due to both the missing bound and the missing map at offset 0.

The mapping 𝜇 (𝑛3) is a deallocated block, denoted by ∅.
The well-formedness condition Wf provides constraints on the formation of blocks. Block-

offset memories may not be well-formed for two reasons: first, a memory such as {3 ↦→ ({0 ↦→
1, 1 ↦→ 0}, Some(1))} is not well-formed because its cells do not respect the bound; second, and

more interestingly, a memory such as {3 ↦→ (∅,None)}, which comprises an empty block is not

well-formed since such blocks break the frame properties of the model (IProp. 2). We elaborate on

this aspect more when we introduce concrete memory actions later (IDef. 2).

The empty memory is the empty mapping 𝜇∅ = ∅. Note that this trivially satisfies Wf .
The definition of · is slightly complex. We exemplify using Fig. 4. Given another memory

𝜇′ = {𝑛2 ↦→ ({0 ↦→ 1, 3 ↦→ 0}, Some(4))}, we have the composition 𝜇 · 𝜇′ which is a mapping that

gives the same results as 𝜇 for block identifiers 𝑛1 and 𝑛3 and, for 𝑛2, gives:

(𝜇 · 𝜇′) (𝑛2) = ({0 ↦→ 1, 1 ↦→ 3, 2 ↦→ false, 3 ↦→ 0}, Some(4))}.
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We use the memory 𝜇′′ = {𝑛2 ↦→ ({1 ↦→ 12}, Some(2))} to illustrate the two reasons why blocks

may fail to compose. Indeed, the composition 𝜇 ·𝜇′′ is not defined for two reasons: first, the addresses
of the blocks at 𝑛2 overlap (i.e., dom(fst(𝜇 (𝑛2))) ∩ dom(fst(𝜇′′ (𝑛2))) ≠ ∅); second, the addresses
of the block 𝜇 (𝑛2) are not contained within the bound of the block 𝜇′′ (𝑛2), meaning that if the

composition would be defined, then the result would not satisfy Wf .
We now cover memory actions (IDef. 2). The successful rules of new and free are given below:

𝑛𝑏 ∉ dom(𝜇) 𝜇𝑏 = ({0 ↦→ null, . . . , 𝑛 − 1 ↦→ null}, Some(𝑛))
𝜇.new( [𝑛]) ⇝ ok : (𝜇 [𝑛𝑏 ↦→ 𝜇𝑏 ], [𝑛𝑏 ])

𝜇 (𝑛𝑏 ) = (𝜇𝑏 , Some(𝑛)) |𝜇𝑏 | = 𝑛

𝜇.free( [𝑛𝑏 ]) ⇝ ok : (𝜇 [𝑛𝑏 ↦→ ∅], [])

Because we are now working with blocks, allocation returns a fresh, complete block, and freeing

a block deallocates an entire complete block given a block identifier. Load and store operations

now also take in the offset as input in addition to the block identifier (and also value for store), and

these operations only require components necessary to load or store, i.e., requiring the relevant

partial block and not the complete block.

Going back to why empty blocks are not allowed by Wf , note that UX frame breaks when

allocation returns a block identifier 𝑛𝑏 pointing to a fresh, complete block, but the frame contains

the same 𝑛𝑏 pointing to an empty block. OX frame instead breaks when you free a block identifier

𝑛𝑏 pointing to a complete block, but the frame contains the same 𝑛𝑏 pointing to an empty block.

We now define the resource assertions and their satisfaction relation (IDef. 3):

𝜇 |=Res (𝑛𝑏, 𝑛𝑜 ) ↦→ 𝑣 ⇔ 𝜇 = {𝑛𝑏 ↦→ ({𝑛𝑜 ↦→ 𝑣},None)}
𝜇 |=Res Bound(𝑛𝑏 ;𝑛) ⇔ 𝜇 = {𝑛𝑏 ↦→ (∅, Some(𝑛)}
𝜇 |=Res 𝑛𝑏 ↦→ ∅ ⇔ 𝜇 = {𝑛𝑏 ↦→ ∅}

The resource assertions consist of: the cell assertion, the bound assertion, and the freed cell assertion.

Note that these resource assertions represent the smallest unit of memory from which to build

larger memory using the separating conjunction. For example, the 𝜇 memory model from Fig. 4

can be represented by the assertion given on the right of the figure. Note that when we defined

CMemB (for IDef. 1), we used (Nat ⇀fin Val,Nat?) instead of the simpler [Val]. This is to ensure

we can define resource assertions for each unit of memory. If the concrete memory model used

lists instead of finite maps, then defining |=Res would become impossible since the relation must

define the entire memory in the relevant block.

The instance data (SMem, 𝜇∅) for IDef. 4 is as follows. The memory data type SMem is a simple

symbolic lifting of CMem:

SMem
def

= LExp ⇀fin (SMemB ⊎ {∅}) where SMemB

def

= (LExp ⇀fin LExp, LExp?)

The empty symbolic memory is, unsurprisingly, 𝜇∅
def

= ∅. Because the memory data type is a

symbolic lifting, |=Mem (IDef. 5) is straightforward to define. The symbolic action semantics (IDef. 6)

is also symbolically lifted from its concrete counterpart and similarly straightforward. Lastly, the

implementation of consumeRes and produceRes (IDef. 7) are also straightforward.

6.4 Memory Model for Object-Oriented Languages
Our CSE theory is not limited to low-level languages such as C, it is also compatible with high-level

languages such as object-oriented languages like JavaScript and Python. In fact, the Gillian project

that inspired our theory has a strong history of JavaScript support, starting from its predecessor

JaVerT [17, 18] (an analysis tool specific to JavaScript). For example, Gillian has been used to test

the data structure library Buckets.js [19, 51] and to verify a JavaScript implementation of a message

header deserialisation module in the AWS Encryption SDK [35].
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We now briefly describe the JavaScript memory model implemented in Gillian to show that it fits

our theory. The model is a variant of the block-offset memory model introduced in the previous sec-

tion; because of the large overlap between themodels, we have notmechanised this JavaScript model.

Model description. The concrete and symbolic memory data types of the JavaScript memory

model implemented in Gillian are as follows (i.e., the data types of IDefs. 1 and 4):
11

CMem
def

= Nat ⇀fin (CMemB, {Str}?) where CMemB

def

= Str ⇀fin (Val ⊎ {∅})
SMem

def

= LExp ⇀fin (SMemB, {LExp}?) where SMemB

def

= LExp ⇀fin (LExp ⊎ {∅})
where {Str} and {LExp} denote sets of Strs and LExps, respectively, and CMemB and SMemB

represent JavaScript objects. The reader should compare these memory data types with the memory

data types of the block-offset memory model and note the following differences. First, note that

offsets (natural numbers) here have been replaced by property names (strings). Because of this, the

bound from the block-offset memory model has been replaced by a set of strings, representing the

“domain” of the object.
12
Second, in JavaScript, objects cannot be deallocated, but ∅-annotations for

negative information are needed for a different reason. In JavaScript, reading fields that have not
been set or have been deleted evaluates to undefined (see the extended paper [31] for an example

JavaScript REPL session where properties are added and deleted). To not break the frame properties

of the model, such “unset” properties must be annotated with ∅.
The memory model has the following memory actions (IDef. 2):

x := newObj(), deleteField(E, E), x := lookup(E, E), mutate(E, E, E).
E.g., deleteField(𝑜, 𝑓 ) deletes field 𝑓 from the object at address 𝑜 and mutate(𝑜, 𝑓 , 𝑣) sets field 𝑓

in the object at address 𝑜 to 𝑣 . While the semantics of JavaScript is complex, this simple memory

model is enough to capture its basic operations: in the JavaScript instantiation of Gillian, JavaScript

programs are compiled to GIL, its intermediate representation, where complex operations (such

as looking up an object field by following the “prototype chain”) are compiled to a sequence of

lower-level operations that are either side-effect free, or one of the actions provided above.

Lastly, the semantics of the actions of the memory model are obtained by applying minor

modifications to the actions of the block-offset memory model. For instance, out-of-bound accesses

happen when a memory lookup is outside the object domain instead of when an offset is outside

the bound of the block, and so on.

6.5 CHERI-Assembly Memory Model
To show that our CSE theory can fit novel memory models beyond the usual suspects, we have

designed and mechanised a new symbolic memory model for a CHERI-enabled idealised assembly

language. CHERI [53] is a recently introduced memory-model-based capability protection model: it

guarantees runtime spatial memory safety via hardware, and this is achieved using capabilities: fat
pointers that carry spatial metadata such as bound, permission, and a tag bit stating the validity

of the capability, in addition to the memory address. Additional capability-aware instructions are

added to the instruction set, where the monotonic property is preserved: valid capabilities cannot

gain more bounds or permissions than what they originally had.

We have proved our memory model OX sound, and plan to prove UX soundness and implement

the memory model in Gillian in future work. To our best knowledge, our memory model is the

11
The memory model in Gillian additionally includes object metadata, which we do not discuss here.

12
This change also leads to a slightly different well-formedness condition. Informally, a memory 𝜇 ∈ CMem is only

well-formed if ∀(𝑜, Just(𝑑 ) ) ∈ codom(𝜇 ) . dom(𝑜 ) ⊆ 𝑑 (see heap-domain invariant [39]). The rest of the well-formedness

condition is similar to the block-offset memory model.
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Cap
def

= {𝑏𝑙𝑜 : Nat; off : Nat; 𝑏𝑎𝑠𝑒 : Nat;
𝑙𝑒𝑛 : Nat; ®𝑝𝑒𝑟𝑚x :

®Bool; 𝑡𝑎𝑔 : Bool}
where 𝑥 ∈ {load, store, ...}

Capfrag
def

= {𝑐𝑎𝑝 : Cap, 𝑛𝑡ℎ : Nat}

CMemB-CH

def

= (Nat ⇀𝑓 𝑖𝑛 Val + Capfrag,Nat?)
CMemBO-CH

def

= Nat ⇀fin (CMemB-CH ⊎ ∅)
CMemCReg

def

= Nat ⇀fin Cap

CMem
def

= (CMemCReg,CMemBO-CH)

Fig. 5. The concrete memory data type.

𝜇 = (𝜇R, 𝜇BO )
(𝜇R, 𝜇BO ) ∈ CMem

𝜇BO (𝑛1 ) = ({0 ↦→ 3, 1 ↦→ 𝑐1}, Some(2) )
𝜇BO (𝑛2 ) = ({𝑖 ↦→ 𝑐𝑖 }, Some( |Cap | )

for 𝑖 ∈ {0, 1, ..., |Cap − 1 | }
𝜇R (𝑟1 ) = 𝑐

𝑟1

𝑛2

𝑛1
𝑏𝑜𝑢𝑛𝑑 : Some(2)3 𝑐1

𝑏𝑜𝑢𝑛𝑑 : Some( |Cap|)𝑐0 ... 𝑐 |Cap−1 |

𝑐

(𝑛1, 0) ↦→ 3 ★

(𝑛1, 1) ↦→cf 𝑐1 ★

Bound(𝑛1; 2) ★
(𝑛2, 0) ↦→cap 𝑐 ★

Bound(𝑛2, |Cap | ) ★
Reg(𝑟1;𝑐 )

Fig. 6. Example CHERI memory instance 𝜇 expressed formally (left), visually (centre), and as a composition
of resource assertions (right).

first memory model for CHERI that supports SL-based symbolic execution and also comes with a

soundness theorem. Details about related work are given in §7.

We first discuss the definition of our new memory model. The CHERI-assembly model is the

most substantial instantiation in this work: the CHERI-assembly model has roughly 19K lines of

code, about 5 times larger than the block-offset model, the second most substantial instantiation.

Afterwards, we discuss our design process. The design process is interesting because the memory

model is the first memory model we have designed for our CSE theory without the guidance of

an existing implementation. We explain how our CSE theory guided us to obtain the appropriate

design: we made two failed design attempts before finally arriving at our current design.

Model description. Our CHERI memory model extends the block-offset memory model of §6.3

to be capability-aware. While the bit-level layout of capabilities may differ between architectures,

even if the metadata is mostly similar; in this work, we work with a CHERI-assembly model with

an abstract and architecture-agnostic design.

We now give the instance data (CMem,Wf , 𝜇∅, ·) conforming to IDef. 1; we first discuss CMem.

Fig. 5 shows the structure of the CHERI-assembly concrete memory model, and Fig. 6 gives as an

instance example 𝜇. There are two main differences with the block-offset memory model: a separate

mapping for capability registers (i.e. CMemCReg) is added, and the main memory (i.e. CMemBO-CH)

is extended to be capability-aware. For capability registers, we use the abstract capability Cap,
which contains spatial metadata of capabilities. For the main memory CMemBO-CH, we extend the

block-offset model by also storing capability byte fragments, represented as Capfrag, in addition to

standard values Val. In Fig. 6, we observe 𝜇BO (𝑛1) contains the capability byte fragment 𝑐1, which is

the second byte fragment of some capability 𝑐 . When a capability is stored in memory, the capability

is stored as a sequence of abstract, contiguous, well-formed capability byte fragments – and we can

observe this in 𝜇BO (𝑛2), where |Cap| is the size of a capability for a given architecture. We note

that each capability byte fragment also stores a tag fragment, and a capability in memory only has

its tag bit set to true if and only if the tag fragment of all the capability fragments is set to true.
Usually, CHERI architectures store tags in the tagged memory, separate from the main memory; in

our model the two memories are merged, and tags are split into tag fragments – the motivation

behind this is explained when we discuss the design process below.
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The well-formedness conditionWf also extends from that of the block-offset memory model.

The additional constraints relate to the well-formedness of capability fragments in the memory.

One obvious property is that the fragment value of Capfrag should be between 0 and |Cap − 1|.
Another property is capability fragments whose tag fragment bit is set to true must be stored

in the appropriate capability-offset-aligned position (the formal description is in the extended

paper [31]). This conforms to the specification that valid capabilities in memory are stored in a

capability-aligned position [52]. All the capability fragments in 𝜇BO (𝑛1) and 𝜇BO (𝑛2) are stored in

a capability-off-aligned position, which makes the overall memory well-formed; but note that if we

instead have 𝜇BO (𝑛1) (1) = 𝑐4, then the memory is well-formed only if 𝑐4.𝑐𝑎𝑝.𝑡𝑎𝑔 = false. As we
will see below, |=Res must account for this too, and part of Wf is expressed in |=Res.

The empty memory 𝜇∅ can be straightforwardly defined as (∅, ∅) (which satisfies Wf ), and · is
also a straightforward extension of that of the block-offset memory model.

fst(𝜇) (𝑟𝑠 ) = 𝑐𝑠 𝑐𝑠 .𝑡𝑎𝑔 = true
𝑐𝑠 .𝑝𝑒𝑟𝑚store = true

𝑟𝑑 is a capability register fst(𝜇) (𝑟𝑑 ) = 𝑐𝑑
(𝑐𝑠 .𝑝𝑒𝑟𝑚storecap = true ∨ 𝑐𝑑 .𝑡𝑎𝑔 = false)

𝑐𝑠 .off + |Cap| ≤ 𝑐𝑠 .𝑏𝑎𝑠𝑒 + 𝑐𝑠 .𝑙𝑒𝑛
𝑐𝑠 .off ≥ 𝑐𝑠 .𝑏𝑎𝑠𝑒 𝑐𝑠 .off % |Cap| = 0

snd(𝜇) (𝑐𝑠 .𝑏𝑙𝑜) = (𝜇𝑏 , Some(𝑚))
𝑐𝑠 .off + |Cap| ≤ 𝑚

{𝑐𝑠 .off, ..., 𝑐𝑠 .off + |Cap| − 1} ⊆ dom(𝜇𝑏 )
store_capability(𝑐𝑠 , 𝑐𝑑 , 𝜇𝑏 ) = 𝜇′

𝑏
𝜇′ = (fst(𝜇), snd(𝜇) [𝑐𝑠 .𝑏𝑙𝑜 ↦→ (𝜇′

𝑏
, Some(𝑚))])

𝜇.store( [𝑟𝑠 , 𝑟𝑑 ]) ⇝ ok : (𝜇′, [])

Fig. 7. Semantics of the capability store action.

We now discuss memory actions (IDef. 2). There

are more than 100 memory-action rules, with rela-

tively complex definitions. To exemplify, we discuss

the successful case of the capability store action,

shown in Fig. 7. The capability store action takes

in 𝑟𝑠 and 𝑟𝑑 , which are capability register numbers

pointing to capability registers 𝑐𝑠 and 𝑐𝑑 , respec-

tively. The idea is that we store 𝑐𝑑 in the location

pointed by 𝑐𝑠 . The action then performs necessary

spatial checks and throws relevant errors when a

spatial safety property is violated, e.g. 𝑐𝑠 must have

the tag bit set to true, and the offset of 𝑐𝑠 must be

within bound and is capability-offset-aligned, etc.

Afterwards, the store_capability function stores 𝑐𝑑
as a sequence of well-formed contiguous capability

byte fragments in the main memory.

We now discuss the resources of this model and their satisfaction relation |=Res (IDef. 3). The

three resources used in the block-offset memory model are directly ported. Additionally, we have

two new resources: Reg(𝑟𝑛 ; 𝑐), which describes that at register 𝑟𝑛 the capability 𝑐 is stored, and

(𝑛𝑏, 𝑛𝑜 ) ↦→𝑐 𝑓 𝑐𝑛 , which states that at block 𝑛𝑏 and offset 𝑛𝑜 , the capability byte fragment 𝑐𝑛 is stored,

where 𝑛 denotes the 𝑛th byte fragment. The resource satisfaction relation |=Res is given below:

𝜇 |=Res Reg(𝑟𝑛 ; 𝑐) ⇔ 𝜇 = ({𝑟𝑛 ↦→ 𝑐}, ∅)
𝜇 |=Res (𝑛𝑏, 𝑛𝑜 ) ↦→cf 𝑐𝑛 ⇔ 𝜇 = (∅, {𝑛𝑏 ↦→ ({𝑛𝑜 ↦→ 𝑐𝑛},None)})

∧ (𝑐𝑛 .𝑐𝑎𝑝.𝑡𝑎𝑔 = true =⇒ 𝑛𝑜 % |Cap| = 𝑛) ∧ 𝑛 < |Cap|
Whereas defining |=Res for the block-offset memory was straightforward, defining |=Res here is

slightly more involved. Due toWf of CHERI, we cannot allow capability byte fragments whose

tag fragment bit is true to be stored anywhere, and we require the fragment value to be valid. The

assertion (𝑛1, 1) ↦→𝑐 𝑓 𝑐1 in Fig. 6 is satisfiable, but (𝑛1, 1) ↦→𝑐 𝑓 𝑐4 is not if 𝑐4.𝑐𝑎𝑝.𝑡𝑎𝑔 = true.
Note that one can define a full, valid capability resource assertion as a user-defined predicate

assertion (𝑛𝑏, 𝑛𝑜 ) ↦→cap 𝑐 as follows:

(𝑛𝑏, 𝑛𝑜 ) ↦→cap 𝑐
def

= ⋆ |Cap |−1
𝑖=0

(𝑛𝑏, 𝑛𝑜 + 𝑖) ↦→cf 𝑐𝑖

In Fig. 6, we can see the capability register mapping is represented using the register assertion,

the capability fragment in 𝜇BO (𝑛1) is represented using the capability fragment assertion, and the

full capability in 𝜇BO (𝑛2) is represented using the user-defined capability predicate assertion.
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The symbolic memory (IDef. 4) is a direct lifting of its concrete counterpart. The satisfaction

relation |=Mem (IDef. 5) extends that of the block-offset model by additionally relating symbolic

capability registers to concrete ones. The symbolic memory actions (IDef. 6) are a symbolic lifting

of the concrete actions. The implementations of consumeRes and produceRes (IDef. 7) extend those

of the block-offset model: there is now an additional case when consuming or producing capability

fragments depending on the tag fragment value of the capability fragment due to Wf .

Design process. Our first attempt at designing the memory model was based on that of Park

et al. [43]. That work separated the main memory into two: the (tagless) main memory, and the

tagged memory, where the tagged bit of a capability was stored in the tagged memory. While this

model closely represented the CHERI hardware, the separation made it difficult to reason about the

complex inter-dependency between the two memories, making it difficult to formalise resource

assertions well-formed with respect to the concrete memory and also prove the OX frame property.

In our second attempt, to address the aforementioned issue, we introduced the notion of a “chunk”

of memory, where a chunk is either a capability or a sequence of values and capability fragments of

size |Cap|. We removed the tagged memory and made capability tags implicitly defined depending

on whether the chunk was a capability or not. Because this model no longer separates the main

memory, there are no inter-dependencies between memories and no troubles proving the OX frame

property or formalising well-formed resource assertions. However, we discovered writing function

specification had limitations, e.g. when the precondition requires a capability fragment, but the

memory comprises the full capability instead, which made the model not truly compositional.

Our third and final attempt introduced the notion of tag fragments in capability fragments. This

ensured true compositionality, unlike the previous attempt, where there are no limitations on how

to write specifications, whilst avoiding complex inter-dependencies between memories.

The structure of the concrete memory model naturally guided us to define the current resource

assertions and their satisfaction relation. Indeed, this formalisation gave us confidence that our

parametric CSE theory is well designed: while this work was done independently from the recently

published Iris-MSWasm work [27], we ended up with resource assertions essentially similar to

those used in the Iris-MSWasm work.

6.6 VeriFast-and-Viper-Inspired Memory Model for C
We have mechanised a memory model for C inspired by the OX verification platforms VeriFast

and Viper. Specifically, we have ported the memory model of Featherweight VeriFast [22] (FVF), a

formalisation of (a simplified version of) VeriFast, to our CSE theory and proved it OX sound. The

motivation for this work is as follows. Beyond Gillian, VeriFast and Viper are the most well-known

consume-and-produce-based CSE platforms. VeriFast and Viper have similar memory models: they

both maintain a flat collection of “heap chunks” (explained below). The memory model we discuss

in this section shows that our CSE theory can fit such memory models.

Model description. FVF analyses a simplified C language with the same memory actions as our

running example memory model. In FVF, the concrete memory model (IDef. 1) is a multiset of

concrete heap chunks. A concrete heap chunk is either a points-to chunk 𝑙 ↦→ 𝑣 denoting that there

is an allocated memory cell at address 𝑙 whose current value is 𝑣 , or amalloc-block chunk𝑚𝑏 (𝑙, size)
denoting that a memory block of size sizewas allocated at address 𝑙 by malloc, i.e., that the memory

cells at addresses 𝑙 through 𝑙 + size − 1 are part of a single block, which will be freed as one unit

when free is called with argument 𝑙 . The memory composition operator is multiset union, and all

heap chunks are disjoint. In our instantiation, we represent concrete heap chunks as follows:

cchunk
def

= CCPointsTo(Nat,Val) | CCMB(Nat,Nat)
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The symbolic memory model (IDef. 4) used in FVF is a multiset of symbolic heap chunks. A

symbolic heap chunk is either a points-to chunk, a malloc-block chunk, or a user-defined-predicate

chunk. Since user-defined predicates are handled independently of the memory model in our CSE

theory, the symbolic chunks of our memory-model instance are as follows:

schunk
def

= SCPointsTo(LExp, LExp) | SCMB(LExp, LExp)

The memory actions of the concrete and symbolic memory models (IDefs. 2 and 6 respectively)

and consumeRes and produceRes operations of the symbolic memory model (IDef. 7) are straightfor-

ward. In FVF, the semantics of the memory actions are simply defined in terms of the consume and

produce operations (concrete consume and produce operations are defined for the concrete memory

model) – we therefore do not include any memory actions in our instance. The consumeRes and
produceRes operations (IDef. 7) of FVF implement unique-match branching (as discussed in §6.1) –

our ported implementations therefore do the same.

7 Related Work
Program logics. Multiple program logics – such as abstract separation logic [11], views [15, 47],

and Iris [24] – are parametric on different PCM-like structures describing memory state and ghost

state. Some of these program logics also feature other types of parametricity, such as programming-

language parametricity. In contrast to CSE, program logics only describe sound inferences rather

than a way to automate reasoning. For memory-model parametricity, the parameters we introduce

in this paper show what is sufficient to animate reasoning and ensuring soundness of this animation.

Compositional symbolic execution. Since we have already discussed the previous work on founda-

tions of memory-model-parametric CSE [19, 35] in the introduction and overview of this paper, we

only discuss memory-model-monomorphic foundations here.

Lööw et al. [32] is the only previous work on CSE theory that treats both OX and UX soundness.

The work is inspired by Gillian but monomorphised to the memory model we use as a running

example in this paper. The work is similar to ours in scope in terms of engine features covered

(function calls, user-defined predicates, etc.). Although the work is not mechanised, it is the

monomorphic work that has influenced us the most; in particular, our consume and produce

properties are inspired by the consume and produce properties they introduce, which they like us

use to ensure interoperability of CSE analysis results with program logics and analysis tools built

on top of program logics.

OX-only CSE is the most well-explored variant of CSE. We list the most significant projects in

chronological order: Appel [1] mechanises a subset of Smallfoot; Jacobs et al. [22] mechanise a subset

of VeriFast; Keuchel et al. [25] argue for the use of Kripke specification monads in mechanising CSE

and illustrate their techniques on small CSE case studies; Zimmerman et al. [58] formalise on paper

a subset of Viper as part of larger work to enable sound gradual verification in Viper; Dardinier

et al. [13] mechanise a soundness framework for translational verifiers, including CSE inspired by

Viper. These projects have either smaller or similar coverage of engine features compared to us.

Most closely related is the work by Dardinier et al. [13], which like us ensure interoperability of

CSE analysis results. Whereas our approach to interoperability forms a semantic connection to

program logics, through the satisfaction relation for assertions 𝜃, (𝑠, 𝜇) |= 𝐴, Dardinier et al. instead

connect up syntactically by proof reconstruction. Larger case studies, for both approaches, are

needed to better evaluate the trade-offs between the two approaches.

Lastly, the Infer-Pulse work [26] treats only UX soundness for bi-abduction and is not mechanised.

Since their engine is specialised to bi-abduction, their coverage of engine features is small.
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Compilation to intermediate verification language. An alternative to symbolic execution is com-

pilation to intermediate verification languages (IVLs) such as Boogie [4] and Why3 [16], which

turns the problem of automating reasoning into a compilation problem. We know of no such work

addressing memory-model parametricity. Other IVL topics have received formal treatments: e.g.,

Parthasarathy et al. [44] mechanise proof-producing compilation to IVLs and targets Boogie in

one case study, and Cohen and Johnson-Freyd [12] mechanise the satisfaction relation of the logic

fragment of Why3 and verify two compilation transformations inspired by Why3.

CHERI memory models. The most closely related previous work on CHERI have targeted CHERI-

C, which extends the C language to support CHERI capabilities. There exist mechanised CHERI-C

memory models formalised in Isabelle/HOL [42, 43] and Rocq [27, 56, 57]. The work of Park et al.

[43] provides an extractable CHERI-C model usable for concrete execution in Gillian, and the

work of Legoupil et al. [27] extends the Iris-Wasm work [48] to incorporate handles, a synonym
for capabilities, and introduces resource assertions for handles. None of these works, however,

cover symbolic execution. ESBMC-CHERI [7] is the only tool that supports symbolic execution of

CHERI-C programs; however, the tool lacks a formal memory model and soundness proof and does

not support compositional reasoning.

Additional interesting memory models. Gillian has two more memory-model instances which we

have not discussed in this work. First, there is an optimised “block-of-trees” memory model for

C which has been used in C verification case studies [35] (but not described in detail in previous

publications). We will instantiate our CSE theory with this model in the future. Second, in work

parallel to ours, Ayoun et al. [2] have instantiated Gillian to Rust. Gillian’s Rust memory model

comprises several components, including a core heap model that extends the block-of-trees model

for C with support for polymorphism and unknown layouts required by Rust. The memory model

also includes ghost state for lifetime and prophecy reasoning. The model should be expressible

using our theory; with the minor exception of the model’s novel automation for reasoning about

mutable borrows, for which a small generalisation of how Gillian handles user-defined predicates

was required. The handling of user-defined predicates in our theory can easily be generalised

by moving it from the memory-model-independent part of our theory into each memory-model

instance. A bigger obstacle to overcome is the fact that the soundness justification of the memory

model relies on results from RustBelt [23] and RustHornBelt [36], requiring a formal connection

between our theory and Iris to leverage these results.

Other interesting targets for future memory instantiations include well-validated formal memory

models from, e.g., the Cerberus project [28, 37] or the WebAssembly project [20].

8 Conclusion
In this paper, we have introduced a formal foundation for memory-model-parametric CSE platforms

for verification and/or bug-finding. Multiple research groups have in recent years turned their

attention to formally defining and proving sound CSE tools and platforms; despite this flurry of

activity, the analysis platform Gillian is today the only CSE platform that supports memory-model

parametricity. We hope this paper will inspire and help other CSE projects to also implement

memory-model parametricity. We have also discussed a series of memory-model instantiations of

our CSE theory, some based on or inspired by instantiations developed for Gillian.

Looking forward, now having in place a formal definition of memory model for CSE, in particular,

sufficient memory-model requirements for memory-model instantiations of our CSE engine to be

sound, we are now in the process of developing a combinator library for memory models, as defined

in this paper, to make it easy to develop and prove sound large and complex memory models by

composing smaller memory-model components together.
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